SPM Applications in Studying Proteins
Proteins play a fundamental role in the structure and the vital functions of all living creatures. This wide class of biomolecules includes well-known names such as albumin, hemoglobin and insulin. Atomic Force Microscopy from its very beginning has contributed significantly to understanding the peculiarities of protein functioning and has provided extra information about their structure and properties.
Atomic Force Microscopy has been successfully employed in exploring protein adsorption onto solid surfaces along with radiolabeling, fluorescence spectroscopy, ellipsometry and other methods. It is quite important in the investigation of implant biocompatibility, in-vitro cell growth, membrane fouling, protein purification and biosensor design. The behavior of proteins at surface defect sites is of interest, as such defects may provide a means of immobilizing biological molecules for detection purposes [1086]. Protein-covered surfaces may be also useful for the catalysis of biological reactions.
Y. F. Dufrene at al. [677, 1527] investigate the organization of collagen adsorbed onto polymer substrates. Combining XPS and radiolabeling they proposed a quantitative description of the layer on the basis of a simple geometric model. AFM allows to confirm this organization by direct observation of the continuous or discontinuous character of the adsorbed layer and provided novel information by revealing topographic features at supramolecular scale (fibrillar structures).
A.P. Quist at al. [804] study the adsorption of albumin (HSA) and tripsin molecules on mica surfaces using AFM. The observed hillocks indicate that molecules are adsorbed partly as aggregates and partly as isolated single molecules. A qualitative estimate of the profiles of the adsorbed molecules can be obtained, giving vivid information on the conformation and domain structure of the adsorbed molecules. Individual molecules are resolved. By the opinions of the authors, it is very exciting that the structure and conformation of individual molecules can be observed in tapping mode AFM, making it a powerful tool for biological research.
P. Kernen at al. [869] investigate aggregations of the largest light-harvesting pigment-protein complex of Photosystem II (SHC II) deposited on glass using the Langmuir-Blodget films technique. The formation of Langmuir-Blodget films with incorporated biomolecules of interest is a common way in preparing flat mono- or multilayer species for measurements with various methods including AFM. Direct observation of the structural organizations in these films helps us to understand specific interactions between molecules within the layer. SHC II is an antenna protein in higher plants comprising almost half of the total pool of the main photosynthetic accessory pigment chlorophylls. Ring-like structures formed in monocomponent protein layers as well as in mixed protein-lipid films were revealed using AFM. It is suggested that LHC II organizes as round-shaped circles with internal diameters of 150-250Å and external diameters of 300-500Å.
Epand at al. [696] first apply Atomic Force Microscopy to study the properties of the hemagglutinin (HA) protein of influenza virus. Association of two different forms of the ectodomain of this protein at supported lipid bilayer interfaces as a function of pH and incubation time was explored. These are bromelain cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the HA protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. The results provide direct evidence of different protein aggregation phenomena at model lipid surfaces for the BHA and FHA2 fragments of the influenza HA, that may be relevant to their function. The results presented in this paper are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self assembly of a membrane fusion protein.
The nondestructive character of Atomic Force Microscopy and the possibility of operation in nearly any physiological conditions prompted studies of lachrymal deposits on Soft Contact Lens (SCL) that are mainly composed of proteins. J. Baguet at al. [445] suggest that AFM is a new exceptional tool for exploring biomaterials and biomolecular-surface interactions by extending the atomic resolution of the scanning tunnelling microscope to non-conducting materials. The use of Scanning Electron Microcopy in such a case faces several disadvantages since lens preparation affects the structure and the surface of the unworn and worn lenses, some deposits are artefactual and the damaging electron beam causes SCL destruction. For proteins identification the combination of AFM and a sodium dodecil sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of extracted SCL deposits were performed in parallel fashion. Thus, new and unique information on SCL deposits from contacting lachrymal component shows that adsorption on surfaces during continuous wear of the soft contact lenses is a two-step mechanism. First, a uniform coating, probably composed of proteins and mucosubstances, covers the surface. Second, structured deposits appear on the lens surface and quickly form an additional layer over the first protein coating. The images clearly show the evolution of the size and structure of these deposits.
The growth of proteins from solutions in crystalline form [118] also attracts large attention in the scientific world. In the last years a number of in situ AFM studies have been performed on lysozyme [119, 546, 1087, 1088, 1089], canavalin [235, 597, 759, 1090, 1092], thaumatin [546, 755, 1091, 1092], a-amilase [300], catalase [222]. Studying the processes of macromolecular crystallization helps to understand better growth kinetics and nucleation mechanisms in crystal growth as a whole. For instance, the investigation of the growth behavior of porcine pancreatic a-amylase at defined supersaturation, performed by J.P. Astier at al. [300], reveals that at high supersaturation (b=1.6) 2-D nucleation is to be the dominating growth mechanism, whereas at lower supersaturation (b=1.3) the growth process appears to be defect controlled (spiral growth). The analysis of step heights on 2-D nucleation islands (monomolecular protein layers) and growth steps (two molecules in height) in combination with results from light scattering experiments suggests that a single protein molecule is the basic growth unit.
Although similar or higher resolution can be obtained by electron microscopy and X-ray crystallography, the excellent signal-to-noise ratio of AFM topographs allows the direct imaging of native proteins [309, 522, 1094] and their substructures to a resolution of about 0.5nm [1099]. AFM enables conformational changes of single proteins and of their assemblies to be observed directly [1501]. Furthermore, conformational changes can be induced in a controlled manner to identify flexible protein structures [1095, 1098, 1505].
The plasma membrane of the cell comprises diverse membrane proteins, including integral membrane proteins such as receptors, ion channels and transporters, as well as certain antigens that are peripherally associated with the membrane. Because of their important roles in cell growth, differentiation and cell-cell signaling, the structures of the plasma membrane and proteins associated with it have attracted wide attention and have been extensively investigated. During the two decades the study of native membrane proteins evolves from measuring AFM topography of the protein layer to single molecule force spectroscopy [381, 1503, 1505, 1517]. In situ AFM investigations of protein-lipid interactions are also performed [1081]. Continuous progress in the AFM apparatus, measurement technique and sample preparation can be clearly seen for one of the most popular object of protein nature ever imaged with AFM - bacteriorhodopsin (BR) covering the purple membrane (PM). This protein acts as a light driven proton pump to produce a finite difference in the proton concentration between the inside and outside of the cell membrane [256]. As summarized by Müller at al. [381], trimeric BR molecules arrange in a trigonal lattice of 6.2±0.2nm side length. Power spectra of the observed structure suggest lateral resolution as low as 0.45nm. Such excellent spatial resolution as well as extra sensitivity at low AFM cantilever loading ranging from 100 nN to 300 nN allows to investigate the major conformations of BR surfaces and to map the variability and the flexibility of individual polypeptide loops connecting transmembrane K-helices of BR. It is revealed that full conformation of the trimer is accomplished when loading force rises from 100 pN to 200 pN. Application of force up to 300 pN results in a deformation of the peripheral protrusions of the trimer and structural information of these areas is lost. Detailed analysis of images obtained allows to differentiate six K-helices of the protein according to their flexibility under load applied. Comparison of AFM data and atomic models of BR (to date six model are offered) derived from electron and X-ray diffraction experiments are presented. There is an excellent correspondence between the surface loops of the BR model and the AFM envelope. Standard deviation maps of the height measured by AFM correspond well with the relative distribution of B-factors of the atomic models as well as the coordinate variance between the models. S.D. maps help revealing the elasticity of single polypeptide loops. In contrast to electron and X-ray crystallography methods, AFM can be used to image surface structures of BR in a buffer solution and at room temperature similar to their physiological environment. All this evidence supports the idea that the AFM not only fulfills the prerequisites to directly monitor function related conformational changes of biological macromolecules [427, 1093, 1502, 1504] but can also characterize dynamic aspects of protein structures, such as their flexibility and variability.
In single molecule force-spectroscopy experiments, the protein complexes are tethered to both support and AFM tip to measure their cohesion when the AFM tip and the support are moved apart. This technique is employed to measure forces between pairs of interacting biological molecules [789, 790, 794, 795, 797, 1509] and forces required for the unfolding of titin domains [1512]. Protein complexes are imaged before and after the removal of individual subunits using the AFM tip as a dissecting nanotool [1096]. Based on these results, the single molecule imaging and single molecule force-spectroscopy capabilities of the AFM are combined to provide novel insights into the inter- and intramolecular interactions of proteins [1515, 1516]. Applied to membrane proteins, these combined techniques allow forces to be measured that anchor the protein in the native membrane, as well as forces required to unfold the tertiary and secondary structure of the protein [1516], and the protein to be imaged at subnanometer resolution.
Please, send all comments and suggestions concerning these pages to info@mikromasch.com.
ID | Reference list (newly come references are marked red) |
118 | AFM studies of the nucleation and growth mechanisms of macromolecular crystals Y.G. Kuznetsov, A.J. Malkin, A. McPherson Journal of Crystal Growth, 196 (1999), 2-4, 489-502 |
119 | Direct AFM observations of impurity effects on a lysozyme crystal G. Sazaki, S.D. Durbin, S. Miyashita, H. Komatsu, T. Nakada Journal of Crystal Growth, 196 (1999), 2-4, 503-510 |
222 | An in situ AFM investigation of catalase crystallization Y.G. Kuznetsov, A.J. Malkin, A. McPherson Surface Science, 393 (1997), 1-3, 95-107 |
235 | An in-situ AFM investigation of canavalin crystallization kinetics T.A. Land, J.J. De Yoreo, J.D. Lee Surface Science, 384 (1997), 1-3, 136-155 |
256 | STM and AFM of bio/organic molecules and structures A. Ikai Surface Science Reports, 26 (1997), 261-332 |
300 | a-amylase crystal growth investigated by in situ atomic force microscopy J.P. Astier, D. Bokern, L. Lapena, S. Veesler Journal of Crystal Growth, 226 (2001), 2-3, 294-302 |
306 | Adsorption of proteins to fused-silica capillaries as probed by atomic force microscopy J.J. Bonvent, R. Barberi, R. Bartolino, L. Capelli, P.G. Righetti Journal of Chromatography A, 756 (1996), 1-2, 233-243 |
309 | An atomic force microscopy investigation of protein crystal surface topography Valeria Mollica, Alberto Borassi, Annalisa Relini, Ornella Cavalleri, Martino Bolognesi, Ranieri Rolandi, Alessandra Gliozzi European Biophysics Journal, 30 (2001), 5, 313-318 |
381 | Atomic force microscopy of native purple membrane D.J. Müller, J.B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, A. Engel Biochimica et Biophysica Acta (BBA)/Bioenergetics, 1460 (2000), 1, 27-38 |
427 | Atomic force microscopy: a powerful tool to observe biomolecules at work A. Engel, Y. Lyubchenko, D.J. Müller Trends Cell Biol. 9 (1999) 77-80 |
445 | Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy J. Baguet, F. Sommer, V. Claudon-Eyl, T.M. Duc Biomaterials, 16 (1995), 1, 3-9 |
522 | High resolution surface structure of Escherichia coliGroES oligomer by atomic force microscopy M. Jianxun, D.M. Czajkowsky, S. Sitong, H. Rouya, S. Zhifeng FEBS Letters, 381 (1996), 1-2, 161-164 |
546 | In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization A.J. Malkin, A. McPherson, Y.G. Kuznetsov Journal of Crystal Growth, 196 (1999), 2-4, 471-488 |
597 | Mechanisms of protein and virus crystal growth: An atomic force microscopy study of canavalin and STMV crystallization T.A. Land, J.J. De Yoreo, A.J. Malkin, Y.G. Kutznesov, A. McPherson Journal of Crystal Growth, 166 (1996), 1-4, 893-899 |
677 | Probing the organization of adsorbed protein layers: complementarity of atomic force microscopy, X-ray photoelectron spectroscopy and radiolabeling Y.F. Dufrene, T.G. Marchal, P.G. Rouxhet Applied Surface Science, 144-145 (1999), 638-643 |
696 | Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy R.F. Epand, C.M. Yip, L.V. Chernomordik, D.L. LeDuc, Y.-K. Shin, R.M. Epand Biochimica et Biophysica Acta (BBA)/Biomembranes, 1513 (2001), 2, 167-175 |
755 | The advancement and structure of growth steps on thaumatin crystals visualized by atomic force microscopy at molecular resolution A. McPherson, Y.G. Kuznetsov, A.J. Malkin, J. Konnert Surface Science, 440 (1999), 1-2, 69-80 |
759 | The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy J.J. De Yoreo, T.A. Land Journal of Crystal Growth, 208 (2000), 1-4, 623-637 |
789 | Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy G.U. Lee, D.A. Kidwell, R.J. Colton Langmuir 10 (1994) 354-357 |
790 | Direct measurement of the forces between complementary strands of DNA G.U. Lee, L.A. Chrisey, R.J. Colton Science 266 (1994) 771-773 |
794 | Adhesion forces between individual ligand-receptor pairs E.-L. Florin, V.T. Moy, H.E. Gaub Science 264 (1994) 415- 417 |
795 | Binding strength between cell adhesion proteoglycans measured by atomic force microscopy U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Guntherodt, G.N. Misevic Science 267 (1995) 1173-1175 |
797 | Specific antigen/antibody interactions measured by force microscopy U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, H.J. Guntherodt Biophys. J. 70 (1996) 2437-2441 |
804 | A scanning force microscopy study of human serum albumin and porcine pancreas trypsin adsorption on mica surfaces A.P. Quist, C.T. Reimann, B.U.R. Sundqvist, L.P. Bjorck, S.O. Oscarsson Surface Science, 325 (1995), 1-2, l406-l412 |
869 | Light-harvesting complex II in monocomponent and mixed lipid-protein monolayers Z. Krupa, M. Matula, P. Kernen, U. Ziegler, W.I. Gruszecki, P. Wagner Biochimica et Biophysica Acta (BBA)/Biomembranes, 1373 (1998), 2, 289-298 |
1081 | a-Synuclein Membrane Interactions and Lipid Specificity E. Jo, J. McLaurin, C.M. Yip, P. George-Hyslop, P.E. Fraser J. Biol. Chem. 275 (2000) 34328-34334 |
1082 | Review: Modulating Factors in Amyloid-Fibril Formation J. McLaurin, D. Yang, C.M. Yip, P.E. Fraser J. Struct. Biol. 130 (2000) 259-270 |
1083 | The Heptameric Prepore of a Staphylococcal alpha-Hemolysin Mutant in Lipid Bilayers Imaged by Atomic Force Microscopy Y. Fang, S. Cheley, H. Bayley, J. Yang Biochemistry 36 (1997), 9518-9522 |
1084 | New Approach for Atomic Force Microscopy of Membrane Proteins The Imaging of Cholera Toxin J. Yang, L.K. Tamm, T.W. Tillack, Z. Shao J. Mol. Biol. 229 (1993) 286-290 |
1085 | Gramicidin A Aggregation in Supported Gel State Phosphatidylcholine Bilayers J. Mou, D.M. Czajkowsky, Z. Shao Biochemistry 35 (1996) 3222-3226 |
1086 | Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite H.Chang and A.J. Bard J. Am. Chem. Soc. 113 (1991) 5588 |
1087 | Lysozyme crystal growth studied by atomic force microscopy S.D. Durbin, W.E. Carlson J. Crystal Growth 122 (1992) 71 |
1088 | In situ studies of protein crystal growth by atomic force microscopy S.D. Durbin, W.E. Carlson, M.T. Saros J. Phys. D: Appl. Phys. 26 (1993) B128 |
1089 | Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope J.H. Konnert, P. dAntonio, K.B. Ward Acta Crystallogr. D 50 (1994) 603 |
1090 | Mechanisms of Protein Crystal Growth: An Atomic Force Microscopy Study of Canavalin Crystallization T.A. Land, A.J. Malkin, Yu.G. Kuznetsov, A. McPherson, J.J. De Yoreo Phys. Rev. Lett. 75 (14) (1995) 2774 |
1091 | Atomic Force Microscopy Studies of Surface Morphology and Growth Kinetics in Thaumatin Crystallization A.J. Malkin, Yu.G. Kuznetsov,W. Glantz, A. McPherson J. Phys. Chem. 100 (1996) 11736 |
1092 | Defect Structure of Macromolecular Crystals A.J. Malkin, Yu.G. Kuznetsov, A. McPherson J. Struct. Biol. 117 (1996) 124 |
1093 | Imaging crystals, polymers, and processes in water with the atomic force microscope B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma Science 243 (1989) 1586-1588 |
1095 | Probing Single Biomolecules with Atomic Force Microscopy J. Fritz, D. Anselmetti, J. Jarchow, X. Fernandez-Busquets J. Sruct. Biol. 119 (1997) 165-171 |
1094 | Native Escherichia coliOmpF porin surfaces probed by atomic force microscopy F.A. Schabert, C. Henn, A. Engel Science 268 (1995) 92-94 |
1096 | Surface Analysis of the Photosystem I Complex by Electron and Atomic Force Microscopy D. Fotiadis, D.J. Müller, G. Tsiotis, L. Hasler, P. Tittmann, T. Mini, P. Jeno, H. Gross, A. Engel J. Mol. Biol. 283 (1998) 83-94 |
1097 | Staphylococcal a-Hemolysin Can Form Hexamers in Phospholipid Bilayers D.M. Czajkowsky, S. Sheng, Z. Shao J. Mol. Biol. 276 (1998) 325-330 |
1098 | High resolution AFM topographs of the Escherichia coliwater channel aquaporin Z S. Scheuring, P. Ringler, M. Borgina, H. Stahlberg, D.J. Müller, P. Agre, A. Engel EMBO J. 18 (1999) 4981-4987 |
1099 | Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope D.J. Müller, D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel Biophys. J. 76 (1999) 1101-1111 |
1500 | Mapping flexible protein domains at subnanometer resolution with the atomic force microscope D.J. Müller, D. Fotiadis, A. Engel FEBS Lett. 430 (1998) 105-111 |
1501 | Conformational change of the hexagonally packed intermediate layer of Deinococcus radioduransmonitored by atomic force microscopy D.J. Müller, W. Baumeister, A. Engel J. Bacteriol. 178 (1996) 3025-3030 |
1502 | Structural Changes in Native Membrane Proteins Monitored at Subnanometer Resolution with the Atomic Force Microscope: A Review D.J. Müller, C.-A. Schoenenberger, F. Schabert, A. Engel J. Struct. Biol. 119 (1997) 149-157 |
1503 | Surface Structures of Native Bacteriorhodopsin Depend on the Molecular Packing Arrangement in the Membrane D.J. Müller, H.-J. Sass, S. Müller, G. Büldt, A. Engel J. Mol. Biol. 285 (1999) 1903-1909 |
1504 | Voltage and pH-induced Channel Closure of Porin OmpF Visualized by Atomic Force Microscopy D.J. Müller, A. Engel J. Mol. Biol. 285 (1999) 1347-1351 |
1505 | Force-induced Conformational Change of Bacteriorhodopsin D.J. Müller, G. Büldt, A. Engel J. Mol. Biol. 249 (1995) 239-243 |
1509 | Adhesive forces between ligand and receptor measured by AFM V.T. Moy, E.-L. Florin, H.E. Gaub Coll. Surf. A93 (1994) 343-348 |
1512 | Reversible unfolding of individual titin Ig-domains by AFM M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub Science 276 (1997) 1109-1112 |
1513 | The molecular elasticity of the extracellular matrix protein tenascin A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, J.M. Fernandez Nature 393 (1998) 181-185 |
1514 | Mechanical and chemical unfolding of a single protein: A comparison M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E. Broedel, J. Clarke, J.M. Fernandez Proc. Natl. Acad. Sci. USA 96 (1999) 3694-3699 |
1515 | Controlled unzipping of a bacterial surface layer with atomic force microscopy D.J. Müller, W. Baumeister, A. Engel Proc. Natl. Acad. Sci. USA 96 (1999) 13170-13174 |
1516 | Unfolding pathways of individual bacteriorhodopsins F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. Gaub, D.J. Müller Science 288 (2000) 143-146 |
1517 | Atomic force microscopy of purple membranes D.L. Worcester, R.G. Miller, P.J. Bryant J. Microsc. 152 (1988) 817-821 |
1518 | Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy D.L. Worcester, H.S. Kim, R.G. Miller, P.J. Bryant J. Vac. Sci. Technol. A8 (1990) 403-405 |
1519 | Imaging the membrane protein bacteriorhodopsin with the atomic force microscope H.-J. Butt, K.H. Downing, P.K. Hansma Biophys. J. 58 (1990) 1473-1480 |
1520 | Imaging purple membranes dry and in water with the atomic force microscope H.-J. Butt, C.B. Prater, P.K. Hansma J. Vac. Sci. Technol. B9 (1991) 1193-1197 |
1521 | Quantitative scanning tunneling and scanning force microscopy of organic materials H.-J. Butt, R. Guckenberger, J.P. Rabe Ultramicroscopy 46 (1992) 375-393 |
1522 | Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy D.J. Müller, F.A. Schabert, G. Büldt, A. Engel Biophys. J. 68 (1995) 1681-1686 |
1523 | Immuno-atomic force microscopy of purple membrane D.J. Müller, C.A. Schoenenberger, G. Büldt, A. Engel Biophys. J. 70 (1996) 1796-1802 |
1524 | Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller Biophys. J. 77 (1999) 1050-1058 |
1525 | Scanning force microscopy and geometrical analysis of two-dimensional collagen network formation M. Mertig, U. Thiele, J. Bradt, G. Leibiger, W. Pompe, H. Wendrock Surf. Interface Anal. 25 (1997) 514 |
1526 | Real-Time Observation of Plasma Protein Film Formation on Well-Defined Surfaces with Scanning Force Microscopy T.C. Ta, M.T. Sykes, M.T. McDermott Langmuir 14 (1998) 2435 |
1527 | Collagen adsorption on poly(methyl methacrylate) : net-like structure formation upon drying Ch.C. Dupont-Gillain, B. Nysten, P.G. Rouxhet Polymer Int., 48, (1999), 271-276 |
37 | Investigation of polystyrene nanoparticles and DNA-protein complexes by AFM with image reconstruction C.F. Zhu, I. Lee, X. Wang, C. Wang, C. Bai Applied Surface Science, 126 (1998), 3-4, 281-286 |
98 | AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force R. Mukhopadhyay, J.H. Hoh FEBS Letters, 505 (2002), 3, 374-378 |
127 | In situ STM and AFM of the copper protein Pseudomonas aeruginosa azurin E.P. Friis, J.E.T. Andersen, L.L. Madsen, P. Möller, J. Ulstrup Journal of Electroanalytical Chemistry, 431 (1997), 1, 35-38 |
397 | Atomic Force Microscopy Studies on Whey Proteins C. Elofsson, P. Dejmek, M. Paulsson, H. Burling International Dairy Journal, 7 (1997), 12, 813-819 |
481 | Dynamics of Pseudomonas aeruginosa azurin and its Cys3Ser mutant at single-crystal gold surfaces investigated by cyclic voltammetry and atomic force microscopy E.P. Friis, J.E.T. Andersen, L.L. Madsen, N. Bonander, P. Möller, J. Ulstrup Electrochimica Acta, 42 (1997), 19, 2889-2897 |
540 | Immunogold Localisation of P-glycoprotein in Supported Lipid Bilayers by Transmission Electron Microscopy and Atomic Force Microscopy I. Ruspantini, M. Diociaiuti, R. Ippoliti, E. Lendaro, M. C. Gaudiano, M. Cianfriglia, P. Chistolini, G. Arancia, A. Molinari Histochemical Journal, 33 (2001), 5, 305-309 |
545 | In situ atomic force microscopy studies of protein and virus crystal growth mechanisms A.J. Malkin, Y.G. Kuznetsov, W. Glantz, A. McPherson Journal of Crystal Growth, 168 (1996), 1-4, 63-73 |
791 | Effects of Discrete Protein-Surface Interactions in Scanning Force Microscopy Adhesion Force Measurements Stuart J.K. and Hlady V. Langmuir 11 (1995), 1368-1374 |
796 | Detection and localization of individual antibody-antigen recognition events by atomic force microscopy Hinterdorfer P., Baumgartner W., Gruber H.J., Schilcher K. and Schindler H. Proc. Natl. Acad. Sci. USA 93 (1996), 3477-3481 |
949 | The role of pulmonary surfactant protein C during the breathing cycle H.-J. Galla, M. Sieber, M. Amrein, A. Von Nahmen, N. Bourdos Thin Solid Films, 327-329 (1998), 632-635 |
964 | Cell-surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement Eppell S.J., Simmons S.R., Albrecht R.M., Marchant R.E. Biophys. J. 68 (1995), 671-680 |
967 | Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscopy: A review. Müller D.J., Schoenenberger C.A., Schabert F., Engel A. J. Struct Biol 119 (1997), 149-157 |
974 | Investigation of the image contrast of tapping-mode atomic force microscopy using protein-modified cantilever tips You H.X., Yu L. Biophys. J. 73 (1997), 3299-3308 |
986 | Protein tracking and detection of protein motion using atomic force microscopy Thomson N.H., Fritz M., Radmacher M., Cleveland J.P., Schmidt C.F., Hansma P.K. Biophys. J. 70 (1996), 2421-2431 |
987 | Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel proteins using atomic force microscopy Henderson R.M., Schneider S., Li Q., Hornby D., White S.D.I., Oberleithner H. Proc. Natl. Acad. Sci. USA 93 (1996), 8756-8760 |
1067 | Study of dynamics of conformational transitions in membrane-protein complexes by means of scanning probe microscopy in native conditions V.I. Lobyshev Èíôîðìàoèîííûé áþëëåòåíü ÐÔÔÈ (rus), 4 (1996), 4, 542 |
1073 | The application of electrochemical scanning probe microscopy to the interpretation of metalloprotein voltammetry J.J. Davis, H.A.O. Hill, A.M. Bond Coordination Chemistry Reviews, 200-202 (2000), 411 - 442 |
1507 | Imaging single-stranded DNA, antigen-antibody reaction and polymerized Langmuir-Blodgett films with an AFM A.L. Weisenhorn, H.E. Gaub, H.G. Hansma, R.L. Sinsheimer, G.L. Kelderman and P.K. Hansma Scanning Microsc. 4 (1990) 511 |
1580 | Probing protein-protein interactions in real time [In Process Citation] Viani M.B., Pietrasanta L.I., Thompson J.B., Chand A., Gebeshuber I.C., Kindt J.H., Richter M., Hansma H.G., Hansma P.K. Nat Struct Biol 7 (2000), 8, 644-647 |
1335 | Surfaces coated with protein layers: a surface force and ESCA study E. Blomberg, P. M. Claesson, J. C. Fröberg Biomaterials 19 (1998) 371-386 |
1355 | Conformational changes, flexibilities and intramolecular forces observed on individual proteins using AFM Daniel J. Müller and Andreas Engel RIKEN Review 36 (2001) 29-31 |
1356 | From art to science in protein crystallization by means of thin-film nanotechnology Eugenia Pechkova and Claudio Nicolini Nanotechnology 13 (2002) 460-464 |
1369 | SPM for Functional Identification of Individual Biomolecules R. Ros, F. Schwesinger, C. Padeste, A. Plückthun, D. Anselmetti, Hans-Joachim Güntherodt, and Louis Tiefenauer SPIE, 3607 (1999) 84-88 |
1397 | Reversible stretching of a monomeric unit in a dimeric bovine carbonic anhydrase B with the atomic force microscope Tong Wang, Hideo Arakawa and Atsushi Ikai Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 253-259 |
1438 | Protein Stretching IV: Analysis of Force-Extension Curves A. Ikai and T. Wang Jpn. J. Appl. Phys., 39 (2000) 3784-3788 |
1669 | Antibody recognition imaging by force microscopy A. Raab, W. Han, D. Badt, S. J. Smith-Gill, S. M. Lindsay, H. Schindler and P. Hinterdorfer Nature Biotechnology, 17 (1999) 9, 902-905 |
1710 | Multi-bead-and-spring model to interpret protein detachment studied by AFM force spectroscopy Csilla Gergely, Joseph Hemmerle, Pierre Schaaf, J. K. Heinrich Horber, Jean-Claude Voegel, and Bernard Senger Biophys. J., 83 (2002) 706 - 722 |
1716 | Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules Bo Zhang and John Spencer Evans Biophys. J., 80 (2001) 597 - 605 |
1717 | Atomic force microscopy and electron microscopy analysis of retrovirus gag proteins assembled in vitro on lipid bilayers Guy Zuber and Eric Barklis Biophys. J., 78 (2000) 373 - 384 |
1718 | Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy Christopher M. Yip, Mark L. Brader, Bruce H. Frank, Michael R. DeFelippis, and Michael D. Ward Biophys. J., 78 (2000) 466 - 473 |
1730 | Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy Philippe Desmeules, Michel Grandbois, Vladimir A. Bondarenko, Akio Yamazaki, and Christian Salesse Biophys. J., 82 (2002) 3343 - 3350 |
1733 | High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes Alvaro San Paulo and Ricardo Garcia Biophys. J., 78 (2000) 1599 - 1605 |
1741 | Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation Robert B. Best, Bin Li, Annette Steward, Valerie Daggett, and Jane Clarke Biophys. J., 81 (2001) 2344 - 2356 |
1742 | Direct visualization of ligand-protein interactions using atomic force microscopy Calum S. Neish, Ian L. Martin, Robert M. Henderson, and J. Michael Edwardson Br. J. Pharmacol., 135 (2002) 1943 - 1950 |
1744 | Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kB transcriptional activation and cytokine secretion Chen-Hsiung Yeh, Lydia Sturgis, Joe Haidacher, Xue-Nong Zhang, Sidney J. Sherwood, Robert J. Bjercke, Ondrej Juhasz, Michael T. Crow, Ronald G. Tilton, and Larry Denner Diabetes, 50 (2001) 1495 - 1504 |
1750 | Sampling the conformational space of membrane protein surfaces with the AFM Simon Scheuring, Daniel J. Muller, Henning Stahlberg, Hans-Andreas Engel and Andreas Engel European Biophysics Journal, 31 (2002), 172-178 |
1751 | Two-dimensional crystals: a powerful approach to assess structure, function anddynamics of membrane proteins Henning Stahlberg, Dimitrios Fotiadis, Simon Scheuring, Herve Remigy, Thomas Braun, Kuora Mitsuoka, Yoshinori Fujiyoshi and Andreas Engel FEBS letters, 504 (2001) 3, 166-172 |
1759 | Multilayer formation upon compression of surfactant monolayers depends on protein concentration as well as lipid composition. An atomic force microscopy study Robert V. Diemel, Margot M. E. Snel, Alan J. Waring, Frans J. Walther, Lambert M. G. van Golde, Gunther Putz, Henk P. Haagsman, and Joseph J. Batenburg J. Biol. Chem, 277 (2002) 21179 - 21188 |
1766 | Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes Ken I. Hohmura, Yutakatti Itokazu, Shige H. Yoshimura, Gaku Mizuguchi, Yu-suke Masamura, Kunio Takeyasu, Yasushi Shiomi, Toshiki Tsurimoto, Hidehiro Nishijima, Seiji Akita, and Yoshikazu Nakayama J. Electron Microsc. (Tokyo), 49 (2000) 415 - 421 |
1783 | Imaging streptavidin 2D-crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope Simon Scheuring, Daniel J. Muller, Philippe Ringler, J. Bernard Heymann, and Andreas Engel Journal of Microscopy, 193 (1999) pp. 28-35 |
1785 | The aquaporin sidedness revisited Simon Scheuring, Peter Tittmann, Henning Stahlberg, Philippe Ringler, Mario Borgnia, Peter Agre, Heinz Gross, and Andreas Engel Journal of Molecular Biology, 299 (2000) 5, pp. 1271-1278 |
1786 | Direct observation of postadsorption aggregation of antifreeze glycoproteins on silicates Ph. Lavalle, A. L. DeVries, C.-C. C. Cheng, S. Scheuring, and J. J. Ramsden Langmuir, 16 (2000) 13, pp. 5785-5789 |
1793 | UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study M. Lysetska, A. Knoll, D. Boehringer, T. Hey, G. Krauss, and G. Krausch Nucleic Acids Res., 30 (2002) 2686 - 2691 |
1800 | Cadherin interaction probed by atomic force microscopy W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn PNAS, 97 (2000) 4005 - 4010 |
1807 | Stepwise unfolding of titin under force-clamp atomic force microscopy Andres F. Oberhauser, Paul K. Hansma, Mariano Carrion-Vazquez, and Julio M. Fernandez PNAS, 98 (2001) 468 - 472 |
1810 | Atomic force microscopy reveals the mechanical design of a modular protein Hongbin Li, Andres F. Oberhauser, Susan B. Fowler, Jane Clarke, and Julio M. Fernandez PNAS, 97 (2000) 6527 - 6531 |
1812 | Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy C. Gergely, J.-C. Voegel, P. Schaaf, B. Senger, M. Maaloum, J. K. H. Horber, and J. Hemmerle PNAS, 97 (2000) 10802 - 10807 |
1813 | Unfolding mechanics of holo- and apocalmodulin studied by the atomic force microscope Rukman Hertadi and Atsushi Ikai Protein Sci., 11 (2002) 1532 - 1538 |
1814 | Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy Annette Steward, Jose Luis Toca-Herrera, and Jane Clarke Protein Sci., 11 (2002) 2179 - 2183 |
1816 | Conformational changes, flexibilities and intramolecular forces observed on individual proteins using AFM Daniel J. Muller, Dimitrios Fotiadis, Clemens Moller, Simon Scheuring, and Andreas Engel Single Molecules 1 (2000) 2, 115-118 |
1817 | Single proteins observed by atomic force microscopy Simon Scheuring, Dimitrios Fotiadis, Clemens Moller, Shirley A. Muller, Andreas Engel and Daniel J. Muller Single Molecules 2 (2001) 2, 59-67 |
1945 | Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth C. M. Yip, M. D. Ward Biophys. J., 71 (1996) 2, 1071-1078 |
The discrimination of IgM and IgG type antibodies and Fab' and F(ab)2 antibody fragments on an industrial substrate using scanning force microscopy C. J. Roberts, M. C. Davies, S. J. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, G. D. Yearwood, J. C. Edwards Ultramicroscopy, 62 (1996) 3, 149-155 |
|
1958 | Atomic force microscopy proposes a novel model for stem-loop structure that binds a heat shock protein in the Staphylococcus aureus HSP70 operon T. Ohta, S. Nettikadan, F. Tokumasu, H. Ideno, Y. Abe, M. Kuroda, H. Hayashi, K. Takeyasu Biochemical and Biophysical Research Communications, 226 (1996) 3, 730-734 |
1973 | Atomic force microscopy visualizes ATP-dependent dissociation of multimeric TATA-binding protein before translocation into the cell nucleus H. Oberleithner, S. Schneider, J. O. Bustamante Pflugers. Arch., 432 (1996) 5, 839-844 |
1880 | Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy G. Folprecht, S. Schneider, H. Oberleithner Pflugers. Arch., 432 (1996) 5, 831-838 |
1946 | Atomic Force Microscopy of Interfacial Protein Films A. P. Gunning, P. J. Wilde, D. C. Clark, V. J. Morris, M. L. Parker, P. A. Gunning J. Colloid. Interface. Sci., 183 (1996) 2, 600-602 |
2171 | Human low density lipoprotein and human serum albumin adsorption onto model surfaces studied by total internal reflection fluorescence and scanning force microscopy C. H. Ho, D. W. Britt, V. Hlady J. Mol. Recognit., 9 (1996) 5-6, 444-455 |
2494 | The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy W. B. Stine, Jr., S. W. Snyder, U. S. Ladror, W. S. Wade, M. F. Miller, T. J. Perun, T. F. Holzman, G. A. Krafft J. Protein Chem., 15 (1996) 2, 193-203 |
2090 | Direct observation of protein secondary structure in gas vesicles by atomic force microscopy T. J. McMaster, M. J. Miles, A. E. Walsby Biophys. J., 70 (1996) 5, 2432-2436 |
2006 | Chaperonins GroEL and GroES: views from atomic force microscopy J. Mou, S. Sheng, R. Ho, Z. Shao Biophys. J., 71 (1996) 4, 2213-2221 |
2115 | Electron and atomic force microscopy of membrane proteins J. B. Heymann, D. J. Muller, K. Mitsuoka, A. Engel Current Opinion in Structural Biology, 7 (1997) 4, 543-549 |
2188 | Imaging of the Early Events of Classical Complement Activation Using Antibodies and Atomic Force Microscopy auml, B. livaara, A. Askendal, Lundstr, ouml, I. I. m, P. Tengvall J. Colloid. Interface. Sci., 187 (1997) 1, 121-127 |
2508 | Three dimensional structure of human fibrinogen under aqueous conditions visualized by atomic force microscopy R. E. Marchant, M. D. Barb, J. R. Shainoff, S. J. Eppell, D. L. Wilson, C. A. Siedlecki Thromb Haemost, 77 (1997) 6, 1048-1051 |
2322 | Observation of metastable Abeta amyloid protofibrils by atomic force microscopy J. D. Harper, S. S. Wong, C. M. Lieber, P. T. Lansbury Chem. Biol., 4 (1997) 2, 119-125 |
2323 | Observing interactions between the IgG antigen and anti-IgG antibody with AFM P. C. Zhang, C. Bai, P. K. Ho, Y. Dai, Y. S. Wu IEEE Eng Med Biol Mag, 16 (1997) 2, 42-46 |
2150 | Gi regulation of secretory vesicle swelling examined by atomic force microscopy B. P. Jena, S. W. Schneider, J. P. Geibel, P. Webster, H. Oberleithner, K. C. Sritharan Proc. Natl. Acad. Sci. USA, 94 (1997) 24, 13317-13322 |
2379 | Scanning (atomic) force microscopy imaging of earthworm haemoglobin calibrated with spherical colloidal gold particles S. Xu, M. F. Arnsdorf J. Microsc., 187 (1997) 1, 43-53 |
2389 | Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin H. Nakajima, Y. Kunioka, K. Nakano, K. Shimizu, M. Seto, T. Ando Biochemical and Biophysical Research Communications, 234 (1997) 1, 178-182 |
2474 | Tertiary structure of the hepatic cell protein fibrinogen in fluid revealed by atomic force microscopy D. J. Taatjes, A. S. Quinn, R. J. Jenny, P. Hale, E. G. Bovill, J. McDonagh Cell. Biol. Int., 21 (1997) 11, 715-726 |
2093 | Direct visualization of collagen-bound proteoglycans by tapping-mode atomic force microscopy M. Raspanti, A. Alessandrini, V. Ottani, A. Ruggeri J. Struct. Biol., 119 (1997) 2, 118-122 |
1935 | Atomic force microscopy of collagen molecules. Surface morphology of segment-long-spacing (SLS) crystallites of collagen Y. Fujita, K. Kobayashi, T. Hoshino J. Electron Microsc. (Tokyo), 46 (1997) 4, 321-6 |
2371 | Reversible unfolding of individual titin immunoglobulin domains by AFM M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub Science, 276 (1997) 5315, 1109-1112 |
2218 | Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies M. Yaneva, T. Kowalewski, M. R. Lieber EMBO J., 16 (1997) 16, 5098-5112 |
2242 | Ku proteins join DNA fragments as shown by atomic force microscopy D. Pang, S. Yoo, W. S. Dynan, M. Jung, A. Dritschilo Cancer. Res., 57 (1997) 8, 1412-1415 |
2060 | Cryo-atomic force microscopy of smooth muscle myosin Y. Zhang, Z. Shao, A. P. Somlyo, A. V. Somlyo Biophys. J., 72 (1997) 3, 1308-1318 |
1869 | AFM analysis of DNA-protamine complexes bound to mica M. J. Allen, E. M. Bradbury, R. Balhorn Nucleic Acids Res., 25 (1997) 11, 2221-2226 |
2550 | Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy B. L. Smith, D. R. Gallie, H. Le, P. K. Hansma J. Struct. Biol., 119 (1997) 2, 109-117 |
2434 | Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly C. M. Yip, M. R. DeFelippis, B. H. Frank, M. L. Brader, M. D. Ward Biophys. J., 75 (1998) 3, 1172-1179 |
1936 | Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure C. M. Yip, M. L. Brader, M. R. DeFelippis, M. D. Ward Biophys. J., 74 (1998) 5, 2199-2209 |
1915 | Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins A. Vinckier, P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindner, P. Groscurth, A. Pluckthun, G. Semenza Biophys. J., 74 (1998) 6, 3256-3263 |
2199 | Imaging two-dimensional arrays of soluble proteins by atomic force microscopy in contact mode using a sharp supertip T. Furuno, H. Sasabe, A. Ikegami Ultramicroscopy, 70 (1998) 3, 125-131 |
2490 | The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy M. Rief, M. Gautel, A. Schemmel, H. E. Gaub Biophys. J., 75 (1998) 6, 3008-3014 |
2262 | Mapping a protein-binding site on straightened DNA by atomic force microscopy H. Yokota, D. A. Nickerson, B. J. Trask, G. van den Engh, M. Hirst, I. Sadowski, R. Aebersold Anal. Biochem., 264 (1998) 2, 158-164 |
2515 | TM-AFM Threshold Analysis of Macromolecular Orientation: A Study of the Orientation of IgG and IgE on Mica Surfaces M. Bergkvist, J. Carlsson, T. Karlsson, S. Oscarsson J. Colloid. Interface. Sci., 206 (1998) 2, 475-481 |
2319 | Observation of geometric structure of collagen molecules by atomic force microscopy V. Baranauskas, B. C. Vidal, N. A. Parizotto Appl. Biochem. Biotechnol., 69 (1998) 2, 91-97 |
2138 | Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy M. F. Paige, J. K. Rainey, M. C. Goh Biophys. J., 74 (1998) 6, 3211-3216 |
1981 | Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study K. C. Sritharan, A. S. Quinn, D. J. Taatjes, B. P. Jena Cell. Biol. Int., 22 (1998) 9-10, 649-655 |
2155 | Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM I. I. Reviakine, W. Bergsma-Schutter, A. Brisson J. Struct. Biol., 121 (1998) 3, 356-361 |
2511 | Thyroid stimulating hormone assays based on the detection of gold conjugates by scanning force microscopy A. Perrin, A. Theretz, B. Mandrand Anal. Biochem., 256 (1998) 2, 200-206 |
2412 | Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy O. H. Willemsen, M. M. Snel, K. O. van der Werf, B. G. de Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. van Kooyk, C. G. Figdor Biophys. J., 75 (1998) 5, 2220-2228 |
2553 | Visualization of trp repressor and its complexes with DNA by atomic force microscopy E. Margeat, C. Le Grimellec, C. A. Royer Biophys. J., 75 (1998) 6, 2712-2720 |
2174 | Identification of microphases in mixed alpha- and omega-gliadin protein films investigated by atomic force microscopy T. J. McMaster, M. J. Miles, L. Wannerberger, A. C. Eliasson, P. R. Shewry, A. S. Tatham J. Agric. Food. Chem., 47 (1999) 12, 5093-5099 |
2182 | Imaging of collagen type III in fluid by atomic force microscopy D. J. Taatjes, A. S. Quinn, E. G. Bovill Microsc. Res. Tech., 44 (1999) 5, 347-352 |
2302 | Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy C. Ionescu-Zanetti, R. Khurana, J. R. Gillespie, J. S. Petrick, L. C. Trabachino, L. J. Minert, S. A. Carter, A. L. Fink Proc. Natl. Acad. Sci. USA, 96 (1999) 23, 13175-13179 |
2234 | Investigation of protein partnerships using atomic force microscopy D. J. Ellis, T. Berge, J. M. Edwardson, R. M. Henderson Microsc. Res. Tech., 44 (1999) 5, 368-377 |
2369 | Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements J. K. Stuart, V. Hlady Biophys. J., 76 (1999) 1/1, 500-508 |
2077 | Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy H. Li, M. A. Perozzo, J. H. Konnert, A. Nadarajah, M. L. Pusey Acta Crystallogr. D: Biol. Crystallogr., 55 (1999) 5, 1023-1035 |
1953 | Atomic force microscopy of the submolecular architecture of hydrated ocular mucins T. J. McMaster, M. Berry, A. P. Corfield, M. J. Miles Biophys. J., 77 (1999) 1, 533-541 |
1914 | Atomic force microscopy captures length phenotypes in single proteins M. Carrion-Vazquez, P. E. Marszalek, A. F. Oberhauser, J. M. Fernandez Proc. Natl. Acad. Sci. USA, 96 (1999) 20, 11288-11292 |
1876 | AFM study of membrane proteins, cytochrome P450 2B4, and NADPH-cytochrome P450 reductase and their complex formation O. I. Kiselyova, I. V. Yaminsky, Y. D. Ivanov, I. P. Kanaeva, V. Y. Kuznetsov, A. I. Archakov Arch. Biochem. Biophys., 371 (1999) 1, 1-7 |
1982 | Binding forces of hepatic microsomal and plasma membrane proteins in normal and pancreatitic rats: an AFM force spectroscopic study L. A. Slezak, A. S. Quinn, K. C. Sritharan, J. P. Wang, G. Aspelund, D. J. Taatjes, D. K. Andersen Microsc. Res. Tech., 44 (1999) 5, 363-367 |
2560 | Watching amyloid fibrils grow by time-lapse atomic force microscopy C. Goldsbury, J. Kistler, U. Aebi, T. Arvinte, G. J. Cooper J. Mol. Biol., 285 (1999) 1, 33-39 |
2103 | Dynamics of astrocyte adhesion as analyzed by a combination of atomic force microscopy and immuno-cytochemistry: the involvement of actin filaments and connexin 43 in the early stage of adhesion Y. Yamane, H. Shiga, H. Asou, H. Haga, K. Kawabata, K. Abe, E. Ito Arch. Histol. Cytol., 62 (1999) 4, 355-361 |
2076 | Determining the molecular-growth mechanisms of protein crystal faces by atomic force microscopy H. Li, A. Nadarajah, M. L. Pusey Acta Crystallogr. D: Biol. Crystallogr., 55 (1999) 5, 1036-1045 |
2414 | Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy P. P. Lehenkari, M. A. Horton Biochemical and Biophysical Research Communications, 259 (1999) 3, 645-650 |
2088 | Direct measurement of the viscoelasticity of adsorbed protein layers using atomic force microscopy C. Nemes, N. Rozlosnik, J. J. Ramsden Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 60 (1999) 2/A, R1166-R1169 |
2468 | Surface-dependent conformations of human fibrinogen observed by atomic force microscopy under aqueous conditions P. S. Sit, R. E. Marchant Thromb Haemost, 82 (1999) 3, 1053-1060 |
2095 | Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM A. N. Parbhu, W. G. Bryson, R. Lal Biochemistry, 38 (1999) 36, 11755-11761 |
2429 | Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy H. Yokota, J. Sunwoo, M. Sarikaya, G. van den Engh, R. Aebersold Anal. Chem., 71 (1999) 19, 4418-4422 |
2092 | Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy J. Hemmerle, S. M. Altmann, M. Maaloum, J. K. Horber, L. Heinrich, J. C. Voegel, P. Schaaf Proc. Natl. Acad. Sci. USA, 96 (1999) 12, 6705-6710 |
2032 | Collagen II containing a Cys substitution for Arg-alpha1-519. Analysis by atomic force microscopy demonstrates that mutated monomers alter the topography of the surface of collagen II fibrils E. Adachi, O. Katsumata, S. Yamashina, D. J. Prockop, A. Fertala Matrix. Biol., 18 (1999) 2, 189-196 |
2473 | Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces C. Moller, M. Allen, V. Elings, A. Engel, D. J. Muller Biophys. J., 77 (1999) 2, 1150-1158 |
2419 | Single protein misfolding events captured by atomic force microscopy A. F. Oberhauser, P. E. Marszalek, M. Carrion-Vazquez, J. M. Fernandez Nat. Struct. Biol., 6 (1999) 11, 1025-1028 |
2465 | Surface topography of the p3 and p6 annexin V crystal forms determined by atomic force microscopy I. Reviakine, W. Bergsma-Schutter, C. Mazeres-Dubut, N. Govorukhina, A. Brisson J. Struct. Biol., 131 (2000) 3, 234-239 |
2081 | Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study M. Raspanti, T. Congiu, A. Alessandrini, P. Gobbi, A. Ruggeri Eur. J. Histochem., 44 (2000) 4, 335-343 |
2176 | Imaging and mapping heparin-binding sites on single fibronectin molecules with atomic force microscopy H. Lin, R. Lal, D. O. Clegg Biochemistry, 39 (2000) 12, 3192-3196 |
1954 | Atomic force microscopy of the three-dimensional crystal of membrane protein, OmpC porin H. Kim, R. M. Garavito, R. Lal Colloids. Surf. B. Biointerfaces, 19 (2000) 4, 347-355 |
2080 | Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy W. Dettmann, M. Grandbois, S. Andre, M. Benoit, A. K. Wehle, H. Kaltner, H. J. Gabius, H. E. Gaub Arch. Biochem. Biophys., 383 (2000) 2, 157-170 |
2123 | Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy C. Yuan, A. Chen, P. Kolb, V. T. Moy Biochemistry, 39 (2000) 33, 10219-10223 |
2210 | Individual plasma proteins detected on rough biomaterials by phase imaging AFM N. B. Holland, R. E. Marchant J. Biomed. Mater. Res., 51 (2000) 3, 307-315 |
2059 | Cryoatomic force microscopy of filamentous actin Z. Shao, D. Shi, A. V. Somlyo Biophys. J., 78 (2000) 2, 950-958 |
1977 | Atomic force microscopy-based detection of binding and cleavage site of matrix metalloproteinase on individual type II collagen helices H. B. Sun, G. N. Smith, Jr., K. A. Hasty, H. Yokota Anal. Biochem., 283 (2000) 2, 153-158 |
2215 | In-situ atomic force microscopy study of beta-amyloid fibrillization H. K. Blackley, G. H. Sanders, M. C. Davies, C. J. Roberts, S. J. Tendler, M. J. Wilkinson J. Mol. Biol., 298 (2000) 5, 833-840 |
1941 | Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems M. P. Deacon, S. McGurk, C. J. Roberts, P. M. Williams, S. J. Tendler, M. C. Davies, S. S. Davis, S. E. Harding Biochem. J., 348 (2000) 3, 557-63 |
2502 | The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy S. Yamamoto, H. Hashizume, J. Hitomi, M. Shigeno, S. Sawaguchi, H. Abe, T. Ushiki Arch. Histol. Cytol., 63 (2000) 2, 127-135 |
2532 | Unfolding forces of titin and fibronectin domains directly measured by AFM M. Rief, M. Gautel, H. E. Gaub Adv. Exp. Med. Biol., 481 (2000) 129-36 (discussion 137-141) |
2391 | Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation P. Odetti, I. Aragno, R. Rolandi, S. Garibaldi, S. Valentini, L. Cosso, N. Traverso, D. Cottalasso, M. A. Pronzato, U. M. Marinari Diabetes. Metab. Res. Rev., 16 (2000) 2, 74-81 |
1865 | Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy C. A. Johnson, Y. Yuan, A. M. Lenhoff J. Colloid. Interface. Sci., 223 (2000) 2, 261-272 |
2266 | Mapping interfacial chemistry induced variations in protein adsorption with scanning force microscopy T. C. Ta, M. T. McDermott Anal. Chem., 72 (2000) 11, 2627-2634 |
2353 | Probing protein-peptide-protein molecular architecture by atomic force microscopy and surface plasmon resonance M. M. Stevens, S. Allen, W. C. Chan, M. C. Davies, C. J. Roberts, S. J. Tendler, P. M. Williams Analyst, 125 (2000) 2, 245-250 |
2405 | Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy J. Moradian-Oldak, M. L. Paine, Y. P. Lei, A. G. Fincham, M. L. Snead J. Struct. Biol., 131 (2000) 1, 27-37 |
2321 | Observation of human corneal and scleral collagen fibrils by atomic force microscopy S. Yamamoto, J. Hitomi, S. Sawaguchi, H. Abe, M. Shigeno, T. Ushiki Jpn. J. Ophthalmol., 44 (2000) 3, 318 |
1846 | X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin T. P. Ko, Y. G. Kuznetsov, A. J. Malkin, J. Day, A. McPherson Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 6, 829-839 |
2530 | Ultrastructure and assembly of segmental long spacing collagen studied by atomic force microscopy M. F. Paige, M. C. Goh Micron, 32 (2001) 3, 355-361 |
2427 | Spin-column isolation of DNA-protein interactions from complex protein mixtures for AFM imaging P. R. Hoyt, M. J. Doktycz, R. J. Warmack, D. P. Allison Ultramicroscopy, 86 (2001) 1-2, 139-143 |
1858 | A tapping mode AFM study of collapse and denaturation in dentinal collagen F. El Feninat, T. H. Ellis, E. Sacher, I. Stangel Dent. Mater., 17 (2001) 4, 284-288 |
2554 | Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution D. Shi, A. V. Somlyo, A. P. Somlyo, Z. Shao J. Microsc., 201 (2001) 3, 377-382 |
2466 | Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy A. Miyagawa, M. Kobayashi, Y. Fujita, O. Hamdy, K. Hirano, M. Nakamura, Y. Miyake Cornea, 20 (2001) 6, 651-656 |
2421 | Single-molecule imaging by atomic force microscopy of the native chaperonin complex of the thermophilic archaeon Sulfolobus solfataricus F. Valle, G. Dietler, P. Londei Biochemical and Biophysical Research Communications, 288 (2001) 1, 258-262 |
1948 | Atomic force microscopy of nonhydroxy galactocerebroside nanotubes and their self-assembly at the air-water interface, with applications to myelin B. Ohler, I. Revenko, C. Husted J. Struct. Biol., 133 (2001) 1, 1-9 |
2349 | Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy P. Facci, D. Alliata, S. Cannistraro Ultramicroscopy, 89 (2001) 4, 291-298 |
2177 | Imaging and mapping protein-binding sites on DNA regulatory regions with atomic force microscopy F. Moreno-Herrero, P. Herrero, J. Colchero, A. M. Baro, F. Moreno Biochemical and Biophysical Research Communications, 280 (2001) 1, 151-157 |
1846 | X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin T. P. Ko, Y. G. Kuznetsov, A. J. Malkin, J. Day, A. McPherson Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 6, 829-839 |
2195 | Imaging the native structure of the chaperone protein GroEL without fixation using atomic force microscopy F. Valle, J. A. Derose, G. Dietler, M. Kawe, A. Pluckthun, G. Semenza J. Microsc., 203 (2001) 2, 195-198 |
1866 | Adsorption and Bioactivity of Protein A on Silicon Surfaces Studied by AFM and XPS M. C. Coen, R. Lehmann, P. Groning, M. Bielmann, C. Galli, L. Schlapbach J. Colloid. Interface. Sci., 233 (2001) 2, 180-189 |
1872 | AFM imaging in solution of protein-DNA complexes formed on DNA anchored to a gold surface O. Medalia, J. Englander, R. Guckenberger, J. Sperling Ultramicroscopy, 90 (2001) 2-3, 103-112 |
1856 | A study of fibrous long spacing collagen ultrastructure and assembly by atomic force microscopy M. F. Paige, J. K. Rainey, M. C. Goh Micron, 32 (2001) 3, 341-353 |
2356 | Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy H. B. Wen, A. G. Fincham, J. Moradian-Oldak Matrix. Biol., 20 (2001) 5-6, 387-395 |
1892 | Analysis of protein crystal growth at molecular resolution by atomic force microscopy M. Wiechmann, O. Enders, C. Zeilinger, H. A. Kolb Ultramicroscopy, 86 (2001) 1-2, 159-166 |
2232 | Investigation of microcontact transfer of proteins from a selectively plasma treated elastomer stamp by fluorescence microscopy and force microscopy X. Feng, C. J. Roberts, D. A. Armitage, M. C. Davies, S. J. Tendler, S. Allen, P. M. Williams Analyst, 126 (2001) 7, 1100-1104 |
1909 | Atomic force microscopy and proteins L. P. da Silva Protein Pept. Lett., 9 (2002) 2, 117-126 |
2049 | Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy D. J. Muller, A. Engel Methods Cell Biol., 68 (2002) 257-299 |
1845 | What can atomic force microscopy tell us about protein folding? R. B. Best, J. Clarke Chem. Commun. (Cambridge), 3 (2002) , 183-192 |
1983 | Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study M. L. Wallwork, J. Kirkham, H. Chen, S. X. Chang, C. Robinson, D. A. Smith, B. H. Clarkson Calcif. Tissue. Int., 71 (2002) 3, 249-255 |
2561 | What can atomic force microscopy tell us about protein folding? R. B. Best, J. Clarke Chem. Commun. (Cambridge), 3 (2002) 183-192 |
2498 | The scanning probe microscopy of metalloproteins and metalloenzymes J. J. Davis, H. A. Hill Chem. Commun. (Cambridge), 5 (2002) 393-401 |
2435 | Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study M. Raspanti, T. Congiu, S. Guizzardi Arch. Histol. Cytol., 65 (2002) 1, 37-43 |
2320 | Observation of human corneal and scleral collagen fibrils by atomic force microscopy S. Yamamoto, J. Hitomi, S. Sawaguchi, H. Abe, M. Shigeno, T. Ushiki Jpn. J. Ophthalmol., 46 (2002) 5, 496-501 |
2320 | The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy J. B. Thompson, H. G. Hansma, P. K. Hansma, K. W. Plaxco J. Mol. Biol., 322 (2002) 3, 645-652 |
2417 | Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy S. Wielert-Badt, P. Hinterdorfer, H. J. Gruber, J. T. Lin, D. Badt, B. Wimmer, H. Schindler, R. K. Kinne Biophys. J., 82 (2002) 5, 2767-2774 |
1984 | Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation G. Agarwal, L. Kovac, C. Radziejewski, S. J. Samuelsson Biochemistry, 41 (2002) 37, 11091-11098 |
2416 | Single molecule imaging of supported planar lipid bilayer--reconstituted human insulin receptors by in situ scanning probe microscopy A. Slade, J. Luh, S. Ho, C. M. Yip J. Struct. Biol., 137 (2002) 3, 283-291 |
2140 | Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy S. Ikeda, V. J. Morris Biomacromolecules, 3 (2002) 2, 382-389 |
2324 | Observing structure, function and assembly of single proteins by AFM D. J. Muller, H. Janovjak, T. Lehto, L. Kuerschner, K. Anderson Prog. Biophys. Mol. Biol., 79 (2002) 1-3, 1-43 |
2192 | Imaging real-time aggregation of amyloid beta protein (1-42) by atomic force microscopy A. Parbhu, H. Lin, J. Thimm, R. Lal Peptides, 23 (2002) 7, 1265-1270 |
2276 | Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering S. B. Fowler, R. B. Best, J. L. Toca Herrera, T. J. Rutherford, A. Steward, E. Paci, M. Karplus, J. Clarke J. Mol. Biol., 322 (2002) 4, 841-849 |
2194 | Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux, D. J. Muller Biophys. J., 82 (2002) 3, 1667-1676 |
2227 | Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy A. C. Lin, M. C. Goh Proteins, 49 (2002) 3, 378-384 |
2202 | In situ atomic force microscopy of partially demineralized human dentin collagen fibrils S. Habelitz, M. Balooch, S. J. Marshall, G. Balooch, G. W. Marshall, Jr. J. Struct. Biol., 138 (2002) 3, 227-236 |
2489 | The mechanical hierarchies of fibronectin observed with single-molecule AFM A. F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, J. M. Fernandez J. Mol. Biol., 319 (2002) 2, 433-447 |
2563 | Improvements in atomic force microscopy protocols for imaging fibrous proteins P. Hallett, L. Tskhovrebova, J. Trinick, G. Offer, M. J. Miles J. Vac. Sci. Technol., B14 (1996) 2, 1444-1448 |
2642 | The study of protein mechanics with the atomic force microscope Fisher T.E., Oberhauser A.F., Carrion-Vazquez M., Marszalek P.E., Fernandez J.M. Trends Biochem. Sci., 24 (1999) 379-384 |