SPM Applications In Biology
The last two decades of using AFM and related Scanning Probe Microscopy techniques in biology show that their popularity and power continue growing. Numerous reviews, both comprehensive and specialized, cited in the reference list and articles devoted to biological applications of Atomic Force Microscopy prove this fact. The state of today's activities in this field can be seen from the collection of latest abstracts from the Biophysical Journal: What Are Biologists Working On Using SPM?
In biology Atomic Force Microscopy has traditionally been used to measure topography [22, 357, 721, 905, 959, 1045, 1068, 1574, 1575, 1584] and nanomechanical properties of biological samples, such as elasticity [256, 327, 360, 593, 676, 992, 995, 1569, 1736]. Now the applications of AFM probing are far beyond these initial ones. AFM has been found to be useful in pharmacology [346, 505] biotechnology [360], microbiology [1755, 1768], structural biology [1764, 1787], molecular biology [1375], genetics [1568, 1781] and other biology related fields.
The variety of objects investigated using Atomic Force Microscopy in biology spans from the smallest biomolecules encompassing proteins, lipids, DNA, RNA and other nucleic acids, to the rather "big" human's platelets, viruses and living cells. The main advantage of AFM in biology as compared to other methods is that it usually does not require specific sample preparation and allows measuring in most of the physiological conditions biological objects are susceptible to. It is the most universal method in the sense that all the media including vacuum can be used for probing. The reason for choosing liquid media instead of air is not only because it is the natural physiological media for biological objects, but also due to the fact that all the interaction forces including unwanted ones are an order of magnitude smaller than in air allowing, for instance, to raise the resolution and to diminish image distortion. Although, it should be noted that measuring in liquids is much more complicated than imaging in air [357].
Because of their softness it is recommended that biological samples be investigated in intermittent-contact or tapping mode AFM. In this mode the probability of sample damage is lowered drastically compared to imaging in contact mode not excluding, though, it's displacement. Nevertheless, contact mode imaging in the beginning of the 21th century successfully deals with extralow loadings in the order of 100 pN [381]. What is more, the quality of AFM apparatus as well as the imaging techniques and data acquisition improves year after year [22, 905, 979, 984, 1045, 1569, 1572, 1575].
Along with direct imaging of biological objects Atomic Force Microscopy plays a significant role among numerous biophysical methods for the investigation of specific and non-specific molecular interactions that all the biological processes are governed by [1713, 1728]. These are the protein-protein, enzyme-substrate, antigen-antibody, receptor-ligand interactions, drug-target associations, a diverse number of biocomplexes and many others. Being an instrument of choice for the investigation of biomolecule activities Atomic Force Microscopy is an ideal means for the visualization and real-time imaging of nucleation and crystallization of macromolecular crystals [118, 545, 546, 1703], processes involved in the cell living cycle [357, 959, 960, 968, 969, 975, 979, 992, 1068], and the functioning of biomolecules [427, 1765].
Because of its capability to monitor biomolecular interactions on biosensor surfaces, Atomic Force Microscopy is applied successfully in biosensing applications [346, 355, 1181, 1592]. The extended force range (theoretical limit estimated to be below 1fN [360]) allows reaching unprecedented sensitivity at the nanoscale. For example, a special biosensor can be manufactured that is capable of detecting biological species at concentrations of 10-18mol/l, which is approximately eight orders of magnitude more sensitive compared with conventional techniques [360].
The high sensitivity achieved so far allows force measurements between individual biomolecules and complexes that have been substantial technical challenge a decade ago. For example, single-molecule atomic force spectroscopy has become standard practice. These advances give rise to developing a novel direction in biosensing techniques based on AFM as mentioned above. Actually, the AFM cantilever itself can be used to serve as the main sensitive element of biosensors. Such force measurements are usually performed using the AFM probe functionalized with a biomolecule of interest and its complementary molecule immobilized onto the sample surface [346, 1725].
AFM by itself is, no doubt, a powerful instrument to explore micro- and nanoscopic biological objects. But since the early days of AFM the necessity of combining with other methods have been considered (see for instance [997]). For example, in biological applications the initial location of the target object is of great importance and the task of determining its position can be easily performed by conventional optical or fluorescence microscopy. It prevents from unnecessary scans and tip contamination while locating, say, cells or subcell organelles such as chromosomes.
It is not much of an exaggeration to say that the AFM prospects in biology are immense and who knows, may be some day in the future gene engineering will be provided with a useful tool for easy manipulating of genes inside a chromosome.
A cumulative list of articles devoted to biological applications of Atomic Force Microscopy and placed in the Biology section including subsections can be downloaded in PDF format:
Biological Applications of Atomic Force Microscopy (Updated on January 14, 2003) |
By now the amount of articles in the list exceeds 1000.
Please send all comments and suggestions concerning these pages to info@mikromasch.com.
ID | Reference list |
22 | Contact resonance imaging - a simple approach to improve the resolution of AFM for biological and polymeric materials D. Dunlap, A. Cattelino, I. de Curtis, F. Valtorta FEBS Letters, 382 (1996), 1-2, 65-72 |
118 | AFM studies of the nucleation and growth mechanisms of macromolecular crystals Y.G. Kuznetsov, A.J. Malkin, A. McPherson Journal of Crystal Growth, 196 (1999), 2-4, 489-502 |
256 | STM and AFM of bio/organic molecules and structures A. Ikai Surface Science Reports, 26 (1997), 261-332 |
327 | Application of atomic force microscopy to the study of micromechanical properties of biological materials W. Richard Bowen, Robert W. Lovitt, Chris J. Wright Biotechnology Letters, 22 (2000), 893-903 |
346 | Atomic force microscopy as a novel pharmacological tool1 R.D.S. Pereira Biochemical Pharmacology, 62 (2001), 975-983 |
353 | Atomic force microscopy for characterization of the biomaterial interface C.A. Siedlecki, R.E. Marchant Biomaterials, 19 (1998), 4-5, 441-454 |
355 | Atomic force microscopy for the characterization of immobilized enzyme molecules on biosensor surfaces Peng Zhang, Weihong Tan Fresenius' Journal of Analytical Chemistry, 369 (2001), 3/4, 302-307 |
357 | Atomic force microscopy imaging of living cells: progress, problems and prospects Hong Xing You, Lei Yu. Methods in Cell Science, 21 (1999), 1, 1-17 |
360 | Atomic force microscopy in analytical biotechnology S. Allen, M.C. Davies, C.J. Roberts, S.J.B. Tendler, P.M. Williams Trends in Biotechnology, 15 (1997), 3, 101-105 |
374 | Atomic force microscopy of biomaterials surfaces and interfaces K.D. Jandt Surface Science, 491 (2001), 3, 303-332 |
381 | Atomic force microscopy of native purple membrane D.J. Müller, J.B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, A. Engel Biochimica et Biophysica Acta (BBA)/Bioenergetics, 1460 (2000), 1, 27-38 |
427 | Atomic force microscopy: a powerful tool to observe biomolecules at work Y. Lyubchenko, A. Engel, D. Müller Trends in Cell Biology, 9 (1999), 2, 77-80 |
505 | Fractal Analysis of Pharmaceutical Particles by Atomic Force Microscopy Tonglei Li, Kinam Park Pharmaceutical Research, 15 (1998), 8, 1222-1232 |
545 | In situ atomic force microscopy studies of protein and virus crystal growth mechanisms A.J. Malkin, Y.G. Kuznetsov, W. Glantz, A. McPherson Journal of Crystal Growth, 168 (1996), 1-4, 63-73 |
546 | In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization A.J. Malkin, A. McPherson, Y.G. Kuznetsov Journal of Crystal Growth, 196 (1999), 2-4, 471-488 |
593 | Measuring elasticity of biological materials by atomic force microscopy G. Semenza, A. Vinckier FEBS Letters, 430 (1998), 1-2, 12-16 |
676 | Probing the microelastic properties of nanobiological particles with tapping mode atomic force microscopy L. Shao, N.J. Tao, R.M. Leblanc Chemical Physics Letters, 273 (1997), 1-2, 37-41 |
721 | Submolecular resolution of single macromolecules with atomic force microscopy Z. Shao, D.M. Czajkowsky FEBS Letters, 430 (1998), 1-2, 51-54 |
905 | Scanning force microscopy in the applied biological sciences Ziv Reich, Ruti Kapon, Reinat Nevo, Yair Pilpel, Sharon Zmora, Yosef Scolnik Biotechnology Advances, 19 (2001), 6, 451-485 |
959 | Atomic force microscopy for high-resolution imaging in cell biology Hoh J.H., Hansma P.K. Trends Cell Biol 2 (1992), 208-213 |
960 | Imaging of living cells by atomic force microscopy Henderson E. Prog Surf Sci 46 (1994), 39-60 |
961 | Biological applications of atomic force microscopy Lal R., John S.A. Am. J. Physiol. 266 (1994), C1-C21 |
968 | Atomic force microscopy of renal cells: Limits and prospects Lesniewska E., Giocondi M-C., Vie V., Finot E., Goudonnet J.P., Le Grimellec C. Kidney Int 65 (1998), S42-S48 |
969 | Imaging surface and submembranous structures with the atomic force microscope: A study on living cancer cells, fibroblasts and macrophages Braet F., Seynaeve C., de Zanger R., Wisse E. J Microsc 190 (1998), 328-338. |
975 | AFM review study on pox viruses and living cells Ohnesorge F.M., Horber J.K.H., Haberle W., Czerny C.P., Smith D.P.E., Binning G. Biophys. J. 73 (1997), 2183-2194 |
979 | An integrated approach to the study of living cells by atomic force microscopy Nagao E., Dvorak J.A. J Microsc 191 (1998), 8-19 |
984 | Scan speed limit in atomic force microscopy Butt H.J., Siedle P., Seifert K., Fendler K., Seeger T., Bamberg E., Weisenhorn A.L., Goldie K., Engel A. J Microsc 169 (1993), 75-84. |
992 | Relative microelastic mapping of living cells by atomic force microscopy A-Hassan E., Heinz W.F., Antonik M.D., D'Costa N.P., Nageswaran S., Schoenenberger C.A., Hoh J.H. Biophys. J. 74 (1998), 1564-1578 |
995 | Measuring the elastic properties of biological samples with the AFM Radmacher M. IEEE Eng Med Biol 16 (1997), 47-57. |
997 | Combining optical and atomic force microscopy for life sciences research Vesenka J., Mosher C., Schaus S., Ambrosio L., Henderson E. Biotechniques 19 (1995), 240-248. |
1024 | Immobilization strategies for biological scanning probe microscopy P. Wagner FEBS Letters, 430 (1998), 1-2, 112-115 |
1045 | Progress in scanning probe microscopy H.K. Wickramasinghe Acta Materialia, 48 (2000), 1, 347-358 |
1053 | Scanning probe microscopy of biomolecules and polymeric biomaterials M.C. Davies, G.J. Leggett, D.E. Jackson, S.J.B. Tendler Journal of Electron Spectroscopy and Related Phenomena, 81 (1996), 249-268 |
1068 | Studying the surface of soft materials (live cells) at high resolution by scanning probe microscopy: Challenges faced J.A. DeRose, J.-P. Revel Thin Solid Films, 331 (1998), 1-2, 194-202 |
1181 | Rapid biochemical detection and differentiation with magnetic force microscope cantilever arrays R.G. Rudnitsky, E.M. Chow, T.W. Kenny Sensors and Actuators A: Physical, 83 (2000), 1-3, 256-262 |
1545 | Applications for Atomic Force Microscopy of DNA Hansma, H. G., M. Bezanilla, D. L. Laney, R. L. Sinsheimer, and P. K. Hansma Biophys. J. 68 (1995), 1672 |
1556 | Atomic force microscopy of biomolecules Hansma H. G. J. Vac. Sci. Technol. B14 (1996) 1390-1394 |
1568 | Potential applications of atomic force microscopy of DNA to the human genome project Hansma, H. G., and P. K. Hansma Proc. SPIE - Int. Soc. Opt. Eng. (USA). 1891 (1993), 66-70 |
1569 | Probing biopolymers with the atomic force microscope: a review Hansma H.G., Pietrasanta L.I., Auerbach I.D., Sorenson C., Golan R., Holden P.A. Journal of Biomaterials Science. Polymer Edition 11 (2000), 7, 675-683 |
1571 | Recent Advances in Atomic force Microscopy of DNA Hansma, H. G., R. L. Sinsheimer, J. Groppe, T. C. Bruice, V. Elings, G. Gurley, M. Bezanilla, I. A. Mastrangelo, P. V. C. Hough, and P. K. Hansma Scanning 15 (1993), 296-299 |
1572 | Recent Highlights from Atomic Force Microscopy of DNA Biological Structure and Dynamics. Hansma H.G., Pietrasanta L.I., Golan R., Sitko J.C., Viani M., Paloczi G., Smith B.L., Thrower D., Hansma P.K. Conversation 11 (2000), 271-276 |
1574 | Surface Biology of DNA by Atomic Force Microscopy Hansma H.G. Ann. Rev. Physical Chemistry 52 (2001), 71-92 |
1575 | Varieties of imaging with scanning probe microscopes Hansma H. G. Proc. Natl. Acad. Sci. USA 96 (1999), 14678--14680 |
1576 | Basement Membrane Macromolecules: Insights from Atomic Force Microscopy Chen C.H., Hansma H.G. J. Struct. Biol. 131 (2000) 44-55 |
1584 | Biomolecular imaging with the atomic force microscope Hansma, H. G., and J. Hoh. Annual Review of Biophysics and Biomolecular Structure. 23 (1994), 115-139 |
1585 | Biological applications of the AFM: from single molecules to organs Kasas, S., N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G. Hansma. Int. J. Imaging Systems and Technology. 8 (1997), 151-161 |
1589 | Translating biomolecular recognition into nanomechanics Fritz J., Baller M.K., Lang H.P., Rothuizen H., Vettiger P., Meyer E., Guntherodt H.-J., Gerber Ch, Gimzewski J.K. Science, 288 (2000), 316-318 |
1592 | Micromechanical cantilever-based biosensors R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal Sensors and Actuators B: 79 (2001), 115-126 |
1653 | Advances in the characterization of supported lipid films with the atomic force microscope Y.F. Dufrene, G.U. Lee Biochimica et Biophysica Acta (BBA)/Biomembranes, 1509 (2000), 1-2, 14-41 |
1375 | A relocated technique of atomic force microscopy (AFM) samples and its application in molecular biology Aiguo Wu, Zhuang Li, Lihua Yu, Hongda Wang and Erkang Wang Ultramicroscopy, Vol. 92 (2002) 3-4, pp. 201-207 |
1703 | Atomic force microscopy in the study of macromolecular crystal growth A. McPherson, A. J. Malkin, and Yu. G. Kuznetsov Annu. Rev. Biophys. Biomol. Struct., 29 (2000) 361 - 410 |
1713 | Biomolecular interactions measured by atomic force microscopy Oscar H. Willemsen, Margot M. E. Snel, Alessandra Cambi, Jan Greve, Bart G. De Grooth, and Carl G. Figdor Biophys. J., 79 (2000) 3267 - 3281 |
1725 | A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy Lutz Schmitt, Markus Ludwig, Hermann E. Gaub, and Robert Tampe Biophys. J., 78 (2000) 3275 - 3285 |
1728 | From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy Martin Stark, Clemens Moller, Daniel J. Muller, and Reinhard Guckenberger Biophys. J., 80 (2001) 3009 - 3018 |
1736 | Determination of elastic moduli of thin layers of soft material using the atomic force microscope Emilios K. Dimitriadis, Ferenc Horkay, Julia Maresca, Bechara Kachar, and Richard S. Chadwick Biophys. J., 82 (2002) 2798 - 2810 |
1755 | Atomic force microscopy, a powerful tool in microbiology Yves F. Dufrene J. Bacteriol., 184 (2002) 5205 - 5213 |
1764 | Atomic force microscopy in structural biology: from the subcellular to the submolecular Danie M. Czajkowsky, Hideki Iwamoto, and Zhifeng Shao J. Electron Microsc. (Tokyo), 49 (2000) 395 - 406 |
1765 | Atomic force microscopy proposes a 'kiss and pull' mechanism for enhancer function Shige H. Yoshimura, Chikashi Yoshida, Kazuhiko Igarashi, and Kunio Takeyasu J. Electron Microsc. (Tokyo), 49 (2000) 407 - 413 |
1768 | The application of the atomic force microscope to studies of medically important protozoan parasites James A. Dvorak, Seiki Kobayashi, Kazuhiro Abe, Tatsushi Fujiwara, Tsutomu Takeuchi, and Eriko Nagao J. Electron Microsc. (Tokyo), 49 (2000) 429 - 435 |
1781 | The atomic force microscope as a new microdissecting tool for the generation of genetic probes Thalhammer, S., Stark, R. Muller, S., Wienberg, J. and Heckl, W.M. J. Struct. Biol. 119 (1997), 232-237 |
1787 | Imaging and manipulation of biological structures with the AFM Dimitrios Fotiadis, Simon Scheuring , Shirley A. Muller, Andreas Engel and Daniel J. Muller Micron, 33 (2002), 4, 385-397 |
1987 | Biological cryo atomic force microscopy: a brief review Z. Shao, Y. Zhang Ultramicroscopy, 66 (1996) 3-4, 141-152 |
2355 | Progress in the application of scanning probe microscopy to biology H. X. You, C. R. Lowe Curr. Opin. Biotechnol., 7 (1996) 1, 78-84 |
2384 | Scanning force microscopy of biological samples M. Lekka, J. Lekki, A. P. Shoulyarenko, B. Cleff, J. Stachura, Z. Stachura Pol J Pathol, 47 (1996) 2, 51-55 |
2432 | Striving for atomic resolution in biomolecular topography: the scanning force microscope (SFM) A. Schaper, T. M. Jovin Bioessays, 18 (1996) 11, 925-935 |
2496 | The role of scanning probe microscopy in drug delivery research K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, P. M. Williams Crit. Rev. Ther. Drug. Carrier. Syst., 13 (1996) 3-4, 225-256 |
1867 | Adsorption of biological molecules to a solid support for scanning probe microscopy D. J. Muller, M. Amrein, A. Engel J. Struct. Biol., 119 (1997) 2, 172-188 |
2161 | High resolution imaging of native biological sample surfaces using scanning probe microscopy A. Engel, C. A. Schoenenberger, D. J. Muller Current Opinion in Structural Biology, 7 (1997) 2, 279-284 |
2184 | Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy T. M. McIntire, D. A. Brant Biopolymers, 42 (1997) 2, 133-146 |
2381 | Scanning force microscopy for imaging biostructures at high-resolution A. Diaspro, R. Rolandi Eur. J. Histochem., 41 (1997) 1, 7-16 |
2399 | Scanning probe microscopy for the characterization of biomaterials and biological interactions M. D. Garrison, B. D. Ratner Ann. N. Y. Acad. Sci., 831 (1997) 101-113 |
2451 | Subpiconewton intermolecular force microscopy M. Tokunaga, T. Aoki, M. Hiroshima, K. Kitamura, T. Yanagida Biochemical and Biophysical Research Communications, 231 (1997) 3, 566-569 |
2124 | Evaluating the interaction of bacteria with biomaterials using atomic force microscopy A. Razatos, Y. L. Ong, M. M. Sharma, G. Georgiou J. Biomater. Sci. Polym. Ed., 9 (1998) 12, 1361-1373 |
1890 | Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy K. D. Costa, F. C. Yin J. Biomech. Eng., 121 (1999) 5, 462-471 |
1921 | Atomic force microscopy imaging of dried or living bacteria D. Robichon, J. C. Girard, Y. Cenatiempo, J. F. Cavellier C. R. Acad. Sci. III, 322 (1999) 8, 687-693 |
1974 | Atomic force microscopy: a forceful way with single molecules A. Engel, H. E. Gaub, D. J. Muller Curr. Biol., 9 (1999) 4, R133-R136 |
2020 | Chemical and biochemical analysis using scanning force microscopy H. Takano, J. R. Kenseth, S. S. Wong, J. C. O'Brien, M. D. Porter Chem. Rev., 99 (1999) 10, 2845-2890 |
2023 | Chemical Force Microscopy Study of Adhesion and Friction between Surfaces Functionalized with Self-Assembled Monolayers and Immersed in Solvents S. C. Clear, P. F. Nealey J. Colloid. Interface. Sci., 213 (1999) 1, 238-250 |
2164 | High speed atomic force microscopy of biomolecules by image tracking S. J. van Noort, K. O. van Der Werf, B. G. de Grooth, J. Greve Biophys. J., 77 (1999) 4, 2295-2303 |
2314 | Novel polymer substrates for SFM investigations of living cells, biological membranes, and proteins A. Linder, U. Weiland, H. J. Apell J. Struct. Biol., 126 (1999) 1, 16-26 |
2352 | Probing Nanometer Structures with Atomic Force Microscopy Z. Shao News Physiol. Sci., 14 (1999) 142-149 |
2493 | The micro-mechanics of single molecules studied with atomic force microscopy T. E. Fisher, P. E. Marszalek, A. F. Oberhauser, M. Carrion-Vazquez, J. M. Fernandez J. Physiol., 520 (1999) 1, 5-14 |
1900 | Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM) K. D. Jandt, M. Finke, P. Cacciafesta Colloids. Surf. B. Biointerfaces, 19 (2000) 4, 301-314 |
1930 | Atomic force microscopy measurements of intermolecular binding strength G. N. Misevic Methods Mol. Biol., 139 (2000) 111-117 |
2021 | Chemical force microscopy of microcontact-printed self-assembled monolayers by pulsed-force-mode atomic force microscopy Y. Okabe, M. Furugori, Y. Tani, U. Akiba, M. Fujihira Ultramicroscopy, 82 (2000) 1-4, 203-212 |
2299 | Monitoring biomolecular interactions by time-lapse atomic force microscopy M. Stolz, D. Stoffler, U. Aebi, C. Goldsbury J. Struct. Biol., 131 (2000) 3, 171-180 |
2358 | Quantification of bacterial adhesion forces using atomic force microscopy (AFM) H. H. Fang, K. Y. Chan, L. C. Xu J. Microbiol. Methods, 40 (2000) 1, 89-97 |
2436 | Structural biology with carbon nanotube AFM probes A. T. Woolley, C. L. Cheung, J. H. Hafner, C. M. Lieber Chem. Biol., 7 (2000) 11, R193-R204 |
2485 | The importance of molecular structure and conformation: learning with scanning probe microscopy B. L. Smith Prog. Biophys. Mol. Biol., 74 (2000) 1-2, 193-113 |
1897 | Application of atomic force microscopy to study initial events of bacterial adhesion A. Razatos Methods Enzymol., 337 (2001) 276-285 |
1907 | Atomic force microscopy and its related techniques in biomedicine T. Ushiki Ital. J. Anat. Embryol., 106 (2001) 2 Suppl 1, 3-8 |
1911 | Atomic force microscopy applications in macromolecular crystallography A. McPherson, A. J. Malkin, Y. G. Kuznetsov, M. Plomp Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 8, 1053-1060 |
1947 | Atomic force microscopy of macromolecular interactions C. M. Yip Current Opinion in Structural Biology, 11 (2001) 5, 567-572 |
2024 | Chemical force microscopy with active enzymes M. Fiorini, R. McKendry, M. A. Cooper, T. Rayment, C. Abell Biophys. J., 80 (2001) 5, 2471-2476 |
2042 | Comparative studies of bacteria with an atomic force microscopy operating in different modes A. V. Bolshakova, O. I. Kiselyova, A. S. Filonov, O. Y. Frolova, Y. L. Lyubchenko, I. V. Yaminsky Ultramicroscopy, 86 (2001) 1-2, 121-128 |
2313 | Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy K. Balashev, T. R. Jensen, K. Kjaer, T. Bjornholm Biochimie, 83 (2001) 5, 387-397 |
1896 | Application of atomic force microscopy to studies of surface processes in virus crystallization and structural biology A. J. Malkin, M. Plomp, A. McPherson Acta Crystallogr. D: Biol. Crystallogr., 58 (2002) 1, 1617-1621 |
1988 | Biomolecular imaging using atomic force microscopy D. J. Muller, K. Anderson Trends in Biotechnology, 20 (2002) 8, S45-S49 |
1990 | Biotechnological applications of atomic force microscopy G. Charras, P. Lehenkari, M. Horton Methods Cell Biol., 68 (2002) 171-191 |
2058 | Cryo-atomic force microscopy S. Sheng, Z. Shao Methods Cell Biol., 68 (2002) 243-256 |
2280 | Methods for biological probe microscopy in aqueous fluids J. H. Kindt, J. C. Sitko, L. I. Pietrasanta, E. Oroudjev, N. Becker, M. B. Viani, H. G. Hansma Methods Cell Biol., 68 (2002) 213-229 |
2455 | Supported lipid bilayers as effective substrates for atomic force microscopy D. M. Czajkowsky, Z. Shao Methods Cell Biol., 68 (2002) 231-241 |
2625 | Dynamic force microscopy imaging of native membranes F. Kienberger, C. Stroh, G. Kada, R. Moser, W. Baumgartner, V. Pastushenko, C. Rankl, U. Schmidt, H. Mueller, E. Orlova, C. LeGrimellec, D. Drenckhahn, D. Blaas, P. Hinterdorfer Ultramicroscopy, 97 (2003) 229-237 |