SPM Investigation of Cells
It is hard to imagine a more fundamental as well as more complicated biological object than a living cell. In a short period of time the applications of AFM have been extended to such a complex field of biology as science of the cell [357, 959, 960, 961].
In this field Atomic Force Microscopy features not only high-resolution imaging of cellular structures below the optical limit, which is quite "natural" for this method, but also evaluation of the micromechanical properties of the cell and the ability to monitor cell dynamics and processes running in it even in real time. At present, no other microscopic techniques are able to provide directly both structural information of a biological sample and related functional information at such high spatial resolution [357]. Using AFM cells can be imaged directly requiring little or no sample pre-treatment and, what is quite importnat, in their most native physiological media such as aqueous solutions. Offering several advantages over conventional microscopic techniques AFM is successfully employed in combination with other methods such as electron microscopy, SNOM, PCT and others [981, 982, 983, 997, 998].
Direct imaging of fixed or living cells and subcellular structures provides important information on the architecture of the membrane, organelles and cytoskeleton of cells. AFM offers a unique opportunity to image, localize and identify integral membrane proteins at the surface of living cells [962, 963, 964, 965, 966, 967]. Although staining or fluorescent labeling to mark the proteins of interest can not be avoided due to the indiscriminative nature of AFM probing relative to chemical composition and nature of the objects, further improvements and extensions promise this problem to be solved. For instance, using a method proposed in [999], the functionality of membrane proteins such as ion channels can be identified using the Patch Clamp Technique (PCT) [980] and the density of the protein distribution over the membrane patch can also be estimated. This combination of AFM and PCT allows for lateral resolution of cytoskeletal elements from the patches as low as 10 nm [981]. To observe membrane structural features such as ruffles, lamellipodia, microspikes and microvilli, cell fixation is used [968, 969]. Because the plasma membrane prevents from observing the intracellular structure the means of its careful removal were developed [970].
Contact mode, commonly used in AFM, is not a very suitable mode for cell imaging since it affects the membrane in a destructive way. Therefore, tapping mode or intermittent contact AFM is preferable in such studies for high-resolution imaging of subcellular structures. The main problem that arises in this case is how to remove tje damping involved by the liquid environment and develop an appropriate contrast mechanism to improve quality [971, 972, 973, 974].
Another major AFM application in cell studies is real-time monitoring of living cells dynamics, intercellular interactions and response to internal and external perturbing factors [357, 975]. Examples include the exploration of exocytosis of a virus from an infected cell in real time [976], platelets shape transformation upon activation [977], cultured pancreas cells secreting the starch-digesting enzyme amylase [978].
The main problem in monitoring the dynamic behavior of the cell is minimizing the perturbation caused by the probe during the scanning process as well as maintaining stable environmental conditions for both temperature and pH value [357, 979]. Another technical challenge is achieving high temporal resolution since the time to acquire a full scan of a living cell often exceeds the characteristic alterations happening in it. Diminishing of undesirable cellular stimulation can be achieved by the implementation of the modified tapping mode technique in liquid or the development of a new technique in which much lower cantilever loading forces are required, and/or the design of novel AFM probes which are biochemically and mechanically compatible with biological samples [357]. The simplest remedy to increase temporal resolution is, obviously, to speed up the scan rate, often though at the expense of spatial resolution [984, 985, 986, 987]. Therefore, existing AFM apparatus and techniques allow to monitor certain dynamic cellular processes, such as cell growth, exocytotic and endocytotic events, which are not very fast in time and requires less power in spatial resolution, and to study the cell morphology in real time in the presence of growth factors, hormones, and other biological reagents. With the development of high scan rate AFM it may be possible to use AFM to monitor the processes that occur at the cell membrane during an antibody binding, vesicle transfer, channel blocking or gating, etc., and to obtain information on the delivery of a specific drug with molecular resolution [357].
Information about the micromechanical properties is quite important for cellular systems because it helps understanding cell architecture and its functions [975, 988, 989, 990, 991, 992, 993, 994]. Local elastic properties of a cell can be quantitatively derived from the force versus distance (F-S) curves obtained at fixed surface points using AFM. Cytosceleton is the main characteristic feature observed in AFM images and it is responsible for the mechanical properties of the cell. Cytosceleton generally defines the shape, activity and mobility of the cell. Data acquired from AFM measurements contains information about both topography and elasticity and these two types must be distinguished from each other. This can be done using the elasticity mapping technique. The accuracy of elasticity measurements depends upon a number of factors considered in [357]. Attention should be paid in the quantitative study of cell micromechanical properties [593, 988, 995].
Please, send all comments and suggestions concerning these pages to info@mikromasch.com
ID | Reference list (newly come references are marked red) |
985 | A fast and versatile scan unit for scanning probe microscopy Knebel D., Amrein M., Voigt K., Reichelt R. Scanning 19 (1997) 264??“268 |
980 | A look at membrane patches with a scanning force microscope Horber J.K.H., Mosbacker J., Haberle W., Ruppersberg J.P., Sakmann B. Biophys J 68 (1995), 1687??“1693 |
981 | A scanning force microscopy for simultaneous force and patch-clamp measurements on living cell tissues Langer M.G., Offner W., Wittmann H., Flosser H., Schaar H., Haberle W., Pralle A., Ruppersberg J.P., Horber J.K.H. Rev Sci Instrum 68 (1997), 2583??“2590 |
975 | AFM review study on pox viruses and living cells Ohnesorge F.M., Horber J.K.H., Haberle W., Czerny C.P., Smith D.P.E., Binning G. Biophys J 73 (1997), 2183??“2194 |
979 | An integrated approach to the study of living cells by atomic force microscopy Nagao E., Dvorak J.A. J Microsc 191 (1998), 8??“19 |
959 | Atomic force microscopy for high-resolution imaging in cell biology Hoh J.H., Hansma P.K. Trends Cell Biol 2 (1992), 208??“213 |
357 | Atomic force microscopy imaging of living cells: progress, problems and prospects Hong Xing You, Lei Yu. Methods in Cell Science, 21 (1999), 1, 1-17 |
965 | Atomic force microscopy of cholera toxin Boligomers bound to bilayers of biologically relevant lipids Mou J., Yang J., Shao Z. J Mol Biol 248 (1995), 507??“512 |
968 | Atomic force microscopy of renal cells: Limits and prospects Lesniewska E., Giocondi M-C., Vie V., Finot E., Goudonnet J.P., Le Grimellec C. Kidney Int 65 (1998), S42??“S48 |
990 | Atomic force microscopy: Influence of air drying and fixation on the morphology and viscoelasticity of cultured cells Weyn B., Kalle W., Kumar-Singh S., van Marck E., Tanke H., Jacob W. J Microsc 189 (1998), 172??“180 |
961 | Biological applications of atomic force microscopy Lal R., John S.A. Am. J. Physiol. 266 (1994), C1??“C21 |
964 | Cell-surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement Eppell S.J., Simmons S.R., Albrecht R.M., Marchant R.E. Biophys J 68 (1995), 671??“680 |
997 | Combining optical and atomic force microscopy for life sciences research Vesenka J., Mosher C., Schaus S., Ambrosio L., Henderson E. Biotechniques 19 (1995), 240??“248 |
973 | Deformation, contact time, and phase-contrast in tapping mode scanning force microscopy Tamayo J., Garcia R. Langmuir 12 (1996), 4430??“4435 |
991 | Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy Goldmann W.H., Galneder R., Ludwig M., Xu W., Adamson E.D., Wang N., Ezzell R.M. Exp Cell Res 239 (1998), 235??“242 |
994 | Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy Shroff S.G., Saner D.R., Lal R. Am J Physiol 269 (1995), C286??“C292 |
977 | Granular motion and membrane spreading during activation of human platelets imaged by atomic force microscopy Radmacher M., Gaub H.E. Biophys J 66 (1994), 1328??“1334 |
999 | Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy Larmer L., Schneider S.W., Danker T., Schwab A., Oberleithner H. Pflugers Arch 434 (1997), 254??“260 |
960 | Imaging of living cells by atomic force microscopy Henderson E. Prog Surf Sci 46 (1994), 39??“60 |
987 | Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel proteins using atomic force microscopy Henderson R.M., Schneider S., Li Q., Hornby D., White S.D.I., Oberleithner H. Proc Nat Aca Sci USA 93 (1996), 8756??“8760 |
970 | Imaging subcellular structures of rat mammary carcinoma cells by scanning force microscopy Pietrasanta L.I., Schaper A., Jovin T.M. J Cell Sci 107 (1994), 2427??“2437 |
969 | Imaging surface and submembranous structures with the atomic force microscope: A study on living cancer cells, fibroblasts and macrophages Braet F., Seynaeve C., de Zanger R., Wisse E. J Microsc 190 (1998), 328??“338 |
982 | Imaging the internal and external pore structure of membranes in fluid: Tapping mode scanning ion conductance microscopy Proksch R., Lal R., Hansma P.K., Morse D., Stucky G. Biophys J 71 (1996), 2155??“2157 |
989 | Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope Hofmann U.G., Rotsch C., Parak W.J., Radmacher M. J. Struct Biol 119 (1997), 84??“91 |
974 | Investigation of the image contrast of tapping-mode atomic force microscopy using protein-modified cantilever tips You H.X., Yu L. Biophys J 73 (1997), 3299??“3308 |
966 | Localization of amiloride-sensitive sodium channels in A6 cells by atomic force microscopy Smith P.R., Bradford A.L., Schneider S., Benos D.J., Geibel J.P. Am J Physiol 272 (1997), C1295??“C1298 |
962 | Localization of individual calcium channels at the release face of a presynaptic nerve terminal Haydon P.C., Henderson E., Stanley E.S. Neuron 13 (1994), 1275??“1280 |
593 | Measuring elasticity of biological materials by atomic force microscopy Vinckier A., Semenza G. FEBS Lett 430 (1998), 12??“16 |
995 | Measuring the elastic properties of biological samples with the AFM Radmacher M. IEEE Eng Med Biol 16 (1997), 47??“57 |
993 | Measuring the viscoelastic properties of human platelets with the atomic force microscope Radmacher M., Fritz M., Kacher C.M., Cleveland J.P., Hansma P.K. Biophys J 70 (1996), 556??“567 |
988 | Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy Ricci D., Tedesco M., Grattarola M. Microsc Res Tech 36 (1997), 165??“171 |
998 | Membrane deformation of living glial cells using atomic force microscopy Haydon P.G., Lartius R., Parpura V., Marchese-Ragona S.P. J Microsc 182 (1996), 114??“120 |
986 | Protein tracking and detection of protein motion using atomic force microscopy Thomson N.H., Fritz M., Radmacher M., Cleveland J.P., Schmidt C.F., Hansma P.K. Biophys J 70 (1996), 2421??“2431 |
992 | Relative microelastic mapping of living cells by atomic force microscopy A-Hassan E., Heinz W.F., Antonik M.D., D??™Costa N.P., Nageswaran S., Schoenenberger C.A., Hoh J.H. Biophys J 74 (1998), 1564??“1578 |
984 | Scan speed limit in atomic force microscopy Butt H.J., Siedle P., Seifert K., Fendler K., Seeger T., Bamberg E., Weisenhorn A.L., Goldie K., Engel A. J. Microsc 169 (1993), 75??“84 |
983 | Scanning ion conductance microscopy of living cells Korchev Y.E., Bashford C.L., Milovanovic M., Vodyanoy I., Lab M.J. Biophys J 73 (1997), 653??“658 |
967 | Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscopy: A review Müller D.J., Schoenenberger C.A., Schabert F., Engel A. J. Struct Biol 119 (1997), 149??“157 |
976 | Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy Braunstein D., Spudich A. Biophys J 66 (1994), 1717??“1725 |
972 | Studies of vibrating atomic force microscope cantilevers in liquid Schaeffer T.E., Cleveland J.P., Ohnesorge F.M., Walters D.A., Hansma P.K. J Appl Phys 80 (1996), 3622??“3627 |
978 | Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis Schneider S.W., Sritharan K.C., Geibel J.P., Oberleithner H., Jena B.P. Proc Natl Acad Sci USA 94 (1997), 316??“321 |
963 | Topography of the Leydig cell mitochondrial peripheral-type benzodiazepine receptor Papadopoulos V., Boujrad N., Ikonomovic M.D., Ferrara P., Vidic B. Mol Cell Endocrinol 104 (1994), R5??“R9 |
971 | Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy Putman C.A.J., van der Werf K.O., de Grooth B.G., van Hulst N.F., Greve J. Biophys J 67 (1994), 1749??“1753 |
419 | Atomic force microscopy to study direct neurite-mast cell (RBL) communication in vitro H. Ohshiro, R. Suzuki, T. Furuno, M. Nakanishi Immunology Letters, 74 (2000), 3, 211 - 214 |
420 | Atomic force microscopy to study the effects of ITIM-bearing FcgRIIB on the activation of RBL-2H3 cells R. Nakamura, M. Nakanishi Immunology Letters, 72 (2000), 3, 167 - 170 |
470 | Detection of the absorption of glucose molecules by living cells using atomic force microscopy R. de Souza Pereira FEBS Letters, 475 (2000), 1, 43-46 |
474 | Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy R. Galneder, R.M. Ezzell, W.H. Goldmann, A. Kromm, M. Ludwig FEBS Letters, 424 (1998), 3, 139-142 |
476 | Direct observation of oxidative stress on the cell wall of Saccharomyces cerevisiae strains with atomic force microscopy Ricardo de Souza Pereira, John Geibel Molecular and Cellular Biochemistry, 201 (1999), 1/2, 17-24 |
495 | Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young's modulus of gelatin gels H. Sato, M. Katano, T. Takigawa, T. Masuda Polymer Bulletin, 47 (2001), 3-4, 375-381 |
513 | Glial cells with differential neurite growth-modulating properties probed by atomic force microscopy G. Weissmuller, J. Garcia-Abreu, P. Mascarello Bisch, V. Moura Neto, L.A. Cavalcante Neuroscience Research, 38 (2000), 2, 217 - 220 |
588 | Measurement of morphological change in endothelial cells by osmotic pressure alteration under atomic force microscopy Y. Kawasaki, S. Shirabe, K. Aizawa, M. Kanazawa, Y. Notoya, T. Hayashi Atherosclerosis, 134 (1997), 1-2, 243 |
622 | Morphological changes in living cell cultures following a-particle irradiation studied by optical and atomic force microscopy D. Selmeczi, B. Szabo, L. Sajo-Bohus, N. Rozlosnik Radiation Measurements, 34 (2001), 1-6, 549-553 |
773 | Three-dimensional characterization of interior structures of exocytotic apertures of nerve cells using atomic force microscopy T. Tojima, Y. Yamane, H. Takagi, T. Takeshita, T. Sugiyama, H. Haga, K. Kawabata, T. Ushiki, K. Abe, T. Yoshioka, E. Ito Neuroscience, 101 (2000), 2, 471-481 |
795 | Binding strength between cell adhesion proteoglycans measured by atomic force microscopy Dammer U., Popescu O., Wagner P., Anselmetti D., Güntherodt H-J. and Misevic G. Science 267 (1995), 1173-1175 |
862 | Investigation of the swelling of human skin cells in liquid media by tapping mode scanning force microscopy T. Richter, J.H. Muller, U.D. Schwarz, R. Wepf, R. Wiesendanger Applied Physics A: Materials Science & Processing, 72 (2001), 7, S125-S128 |
871 | Local elastic properties of cells studied by SFM M. Lekka, Z. Stachura, J. Lekki, P. Golonka, A.Z. Hrynkiewicz, M. Marszalek, B. Cleff Applied Surface Science, 141 (1999), 3-4, 345-349 |
944 | The effect of chitosan on stiffness and glycolytic activity of human bladder cells M. Lekka, P. Laidler, J. Ignacak, M. Labedz, J. Lekki, H. Struszczyk, Z. Stachura, A.Z. Hrynkiewicz Biochimica et Biophysica Acta (BBA)/Molecular Cell Research, 1540 (2001), 2, 127-136 |
1044 | Preparation of basal cell membranes for scanning probe microscopy G. Semenza, P. Kernen, J. Biber, H. Murer, A. Vinckier, D. Zeisel, U. Ziegler, P. Groscurth FEBS Letters, 436 (1998), 2, 179-184 |
1068 | Studying the surface of soft materials (live cells) at high resolution by scanning probe microscopy: Challenges faced J.A. DeRose, J.-P. Revel Thin Solid Films, 331 (1998), 1-2, 194-202 |
1080 | Atomic force microscopy combined with confocal laser scanning microscopy: a new look at cells C.A.J. Putman, A.M. van Leeuwen, B.G. de Grooth, K. Radosevic, K.O. Van der Werf, N.F. van Hulst and J. Greve, Bioimaging 1 (1993) 70 |
1531 | In situ investigation of single living cells infected by viruses Haberle W., Horber J.K.H., Ohnesorge F.M., Smith D.P.E., Binnig G. Ultramicroscopy 42-44 (1992) 1161-1167 |
1535 | Kinetics and mechanics of cell adhesion Zhu C. J Biomech 33 (2000) pp. 23-33. |
1329 | New technologies in scanning probe microscopy for studying molecular interactions in cells Petri P. Lehenkari, Guillaume T. Charras, Stephen A. Nesbitt and Mike A. Horton Exp. Rev. Mol. Med. (2000) 8 March, http://www-ermm.cbcu.cam.ac.uk/00001575h.htm |
1398 | Use of AFM for imaging and measurement of the mechanical properties of light-convertible organelles in plants Takafumi Yamada, Hideo Arakawa, Takaharu Okajima, Takayoshi Shimada and Atsushi Ikai Ultramicroscopy, Vol. 91 (2002) 1-4, pp. 261-268 |
1399 | Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells Shuhei Nishida, Yutaka Funabashi and Atsushi Ikai Ultramicroscopy, Vol. 91 (2002) 1-4, pp. 269-274 |
1664 | Surface morphological characterization of yeast cells by scanning force microscopy A. Mendez-Vilas, A. M. Gallardo, Ciro Perez-Giraldo, M. L. Gonzalez-Martin, M. J. Nuevo Surface and Interface Analysis, 31 (2001) 11, 1027-1030 |
1665 | Comparative study of the hydrophobicity of Candida parapsilosis 294 through macroscopic and microscopic analysis A. M. Gallardo Moreno, A.Mendez-Vilas, M.L.Gonzalez-Martin, M.J.Nuevo, J.M.Bruque, E.Gardu and C.Perez Giraldo Langmuir 18 (2002), 3639-3644 |
1700 | Pushing, pulling, dragging, and vibrating renal epithelia by using atomic force microscopy Robert M. Henderson and Hans Oberleithner Am J Physiol Renal Physiol, 278 (2000) 689 - 701 |
1706 | Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells Anshu Bagga Mathur, George A. Truskey, and W. Monty Reichert Biophys. J., 78 (2000) 1725 - 1735 |
1711 | Determination of cellular strains by combined atomic force microscopy and finite element modeling Guillaume T. Charras and Mike A. Horton Biophys. J., 83 (2002) 858 - 879 |
1720 | Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study Christian Rotsch and Manfred Radmacher Biophys. J., 78 (2000) 520 - 535 |
1723 | The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Shaohua Xu, Brooke Bevis, and Morton F. Arnsdorf Biophys. J., 81 (2001) 446 - 454 |
1726 | Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes Yves F. Dufrene Biophys. J., 78 (2000) 3286 - 3291 |
1729 | Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation Guillaume T. Charras and Mike A. Horton Biophys. J., 82 (2002) 2970 - 2981 |
1731 | Morphology and transverse stiffness of Drosophila myofibrils measured by atomic force microscopy Lori R. Nyland and David W. Maughan Biophys. J., 78 (2000) 1490 - 1497 |
1734 | Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain Henny C. van der Mei, Henk J. Busscher, Rolf Bos, Joop de Vries, Christophe J. P. Boonaert, and Yves F. Dufrene Biophys. J., 78 (2000) 2668 - 2674 |
1747 | Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy Sang-Joon Cho, Ksenija Jeftinija, Aleksandra Glavaski, Srdija Jeftinija, Bhanu P. Jena, and Lloyd L. Anderson Endocrinology 143 (2002) 1144 |
1752 | An Atomic force microscopy investigation of bioadhesive polymer adsorption onto human buccal cells Dharmendra Patel, James R. Smith, Andrew W. Smith, Nigel Grist, Paul Barnett, John D. Smart Int. J. Pharm. 200 (2000) 271-277 |
1753 | The use of atomic force microscopy for the observation of corneal epithelium surface Miltiadis K. Tsilimbaris, Eric Lesniewska, Stella Lydataki, Christian Le Grimellec, Jean P. Goudonnet, and Ioannis G. Pallikaris Invest. Ophthalmol. Vis. Sci., 41 (2000) 680 - 686 |
1756 | Atomic force microscopy reveals two conformations of the 20 S proteasome from fission yeast Pawel A. Osmulski and Maria Gaczynska J. Biol. Chem, 275 (2000) 13171 - 13174 |
1760 | A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells Filip Braet, Ronald de Zanger, Carine Seynaeve, Marijke Baekeland, and Eddie Wisse J. Electron Microsc. (Tokyo), 50 (2001) 283 - 290 |
1769 | Structural analysis of red blood cell membrane with an atomic force microscope S. Yamashina and O. Katsumata J. Electron Microsc. (Tokyo), 49 (2000) 445 - 451 |
1770 | The cell biological application of carbon nanotube probes for atomic force microscopy: comparative studies of malaria-infected erythrocytes Eriko Nagao, Hirohide Nishijima, Seiji Akita, Yoshikazu Nakayama, and James A. Dvorak J. Electron Microsc. (Tokyo), 49 (2000) 453 - 458 |
1771 | Time-lapse viscoelastic imaging of living fibroblasts using force modulation mode in AFM Hisashi Haga, Masafumi Nagayama, Kazushige Kawabata, Etsuro Ito, Tatsuo Ushiki, and Takashi Sambongi J. Electron Microsc. (Tokyo), 49 (2000) 473 - 481 |
1772 | Observations of xenon gas-treated barley cells in solution by atomic force microscopy Tomoyuki Yoshino, Itaru Sotome, Toshio Ohtani, Seiichiro Isobe, Sei-ichi Oshita, and Takaaki Maekawa J. Electron Microsc. (Tokyo), 49 (2000) 483 - 486 |
1777 | Affinity imaging of red blood cells using an atomic force microscope Michel Grandbois, Wolfgang Dettmann, Martin Benoit, and Hermann E. Gaub J. Histochem. Cytochem., 48 (2000) 719 - 724 |
1790 | Charting and unzipping the surface-layer of Corynebacterium glutamicum with the atomic force microscope Simon Scheuring, Henning Stahlberg, Mohamed Chami, Christine Houssin, Jean-Louis Rigaud and Andreas Engel Molecular Microbiology, 44 (2002), 3, pp. 675-684 |
1805 | Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells Mike McElfresh, Eveline Baesu, Rod Balhorn, James Belak, Michael J. Allen, and Robert E. Rudd PNAS, 99 (2002) 6493 - 6497 |
1928 | Atomic force microscopy in histology and cytology T. Ushiki, J. Hitomi, S. Ogura, T. Umemoto, M. Shigeno Arch. Histol. Cytol., 59 (1996) 5, 421-431 |
2549 | Visualization of plant cell walls by atomic force microscopy A. R. Kirby, A. P. Gunning, K. W. Waldron, V. J. Morris, A. Ng Biophys. J., 70 (1996) 3, 1138-1143 |
2277 | Membrane knobs of unfixed Plasmodium falciparum infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy M. Aikawa, K. Kamanura, S. Shiraishi, Y. Matsumoto, H. Arwati, M. Torii, Y. Ito, T. Takeuchi, B. Tandler Exp. Parasitol., 84 (1996) 3, 339-343 |
2543 | Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology W. H. Goldmann, R. M. Ezzell Exp. Cell. Res., 226 (1996) 1, 234-237 |
2041 | Comparative scanning, transmission and atomic force microscopy of the microtubular cytoskeleton in fenestrated liver endothelial cells F. Braet, R. De Zanger, W. Kalle, A. Raap, H. Tanke, E. Wisse Scanning Microsc. Suppl., 10 (1996) 225-235 (discussion 235-236) |
1880 | Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy G. Folprecht, S. Schneider, H. Oberleithner Pflugers. Arch., 432 (1996) 5, 831-838 |
2040 | Comparative atomic force and scanning electron microscopy: an investigation on fenestrated endothelial cells in vitro F. Braet, W. H. Kalle, R. B. De Zanger, B. G. De Grooth, A. K. Raap, H. J. Tanke, E. Wisse J. Microsc., 181 (1996) 1, 10-17 |
2390 | Scanning force microscopy reveals ellipsoid shape of chicken erythrocyte nucleosomes W. Fritzsche, E. Henderson Biophys. J., 71 (1996) 4, 2222-2226 |
1940 | Atomic force microscopy of Escherichia coli FoF1-ATPase in reconstituted membranes K. Takeyasu, H. Omote, S. Nettikadan, F. Tokumasu, A. Iwamoto-Kihara, M. Futai Ann. N. Y. Acad. Sci., 834 (1997) 149-152 |
1847 | A non-invasive method for the tight anchoring of cells for scanning force microscopy K. Schilcher, P. Hinterdorfer, H. J. Gruber, H. Schindler Cell. Biol. Int., 21 (1997) 11, 769-78 |
1950 | Atomic force microscopy of plant cell walls, plant cell wall polysaccharides and gels V. J. Morris, A. P. Gunning, A. R. Kirby, A. Round, K. Waldron, A. Ng Int. J. Biol. Macromol., 21 (1997) 1-2, 61-66 |
2003 | Cellular and molecular mechanics by atomic force microscopy: capturing the exocytotic fusion pore in vivo? J. M. Fernandez Proc. Natl. Acad. Sci. USA, 94 (1997) 1, 9-10 |
2263 | Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy M. Gad, A. Itoh, A. Ikai Cell. Biol. Int., 21 (1997) 11, 697-706 |
2002 | Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy S. S. Schaus, E. R. Henderson Biophys. J., 73 (1997) 3, 1205-1214 |
2413 | Simultaneous imaging of the surface and the submembraneous cytoskeleton in living cells by tapping mode atomic force microscopy C. Le Grimellec, E. Lesniewska, M. C. Giocondi, E. Finot, J. P. Goudonnet C. R. Acad. Sci. III, 320 (1997) 8, 637-643 |
2117 | Electron probe X-ray microanalysis of cultured epithelial tumour cells with scanning electron microscopy E. Fernandez-Segura, F. J. Canizares, M. A. Cubero, F. Revelles, A. Campos Cell. Biol. Int., 21 (1997) 10, 665-669 |
1962 | Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis Y. G. Kuznetsov, A. J. Malkin, A. McPherson J. Struct. Biol., 120 (1997) 2, 180-191 |
2100 | Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells F. Braet, R. De Zanger, E. Wisse J. Microsc., 186 (1997) 1, 84-87 |
1955 | Atomic force microscopy on living cells: aldosterone-induced localized cell swelling S. W. Schneider, P. Pagel, J. Storck, Y. Yano, B. E. Sumpio, J. P. Geibel, H. Oberleithner Kidney Blood Press Res., 21 (1998) 2-4, 256-258 |
2272 | Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking H. W. Wu, T. Kuhn, V. T. Moy Scanning, 20 (1998) 5, 389-397 |
2241 | Kinetic analysis of the mitotic cycle of living vertebrate cells by atomic force microscopy J. A. Dvorak, E. Nagao Exp. Cell. Res., 242 (1998) 1, 69-74 |
2110 | Elastic properties of living fibroblasts as imaged using force modulation mode in atomic force microscopy S. Sasaki, M. Morimoto, H. Haga, K. Kawabata, E. Ito, T. Ushiki, K. Abe, T. Sambongi Arch. Histol. Cytol., 61 (1998) 1, 57-63 |
1976 | Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime P. C. Braga, D. Ricci Antimicrob. Agents Chemother., 42 (1998) 1, 18-22 |
2189 | Imaging of the surface of living cells by low-force contact-mode atomic force microscopy C. Le Grimellec, E. Lesniewska, M. C. Giocondi, E. Finot, V. Vie, J. P. Goudonnet Biophys. J., 75 (1998) 2, 695-703 |
2440 | Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy M. Takeuchi, H. Miyamoto, Y. Sako, H. Komizu, A. Kusumi Biophys. J., 74 (1998) 5, 2171-2183 |
1927 | Atomic force microscopy in effusion cytology B. Ross, H. Motherby, F. Saurenbach, J. Frohn, M. Kube, A. Bocking Anal. Quant. Cytol. Histol., 20 (1998) 2, 97-104 |
2112 | Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, A. Z. Hrynkiewicz European Biophysics Journal, 28 (1999) 4, 312-316 |
1971 | Atomic force microscopy to study the degranulation in rat peritoneal mast cells after activation R. Nakamura, M. Nakanishi Immunology Letters, 69 (1999) 3, 307-310 |
2001 | Cell adhesion force microscopy G. Sagvolden, I. Giaever, E. O. Pettersen, J. Feder Proc. Natl. Acad. Sci. USA, 96 (1999) 2, 471-476 |
2338 | Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells E. Nagao, J. A. Dvorak Biophys. J., 76 (1999) 6, 3289-3297 |
2051 | Continuous detection of extracellular ATP on living cells by using atomic force microscopy S. W. Schneider, M. E. Egan, B. P. Jena, W. B. Guggino, H. Oberleithner, J. P. Geibel Proc. Natl. Acad. Sci. USA, 96 (1999) 21, 12180-12185 |
2185 | Imaging of living cultured cells of an epithelial nature by atomic force microscopy T. Ushiki, J. Hitomi, T. Umemoto, S. Yamamoto, H. Kanazawa, M. Shigeno Arch. Histol. Cytol., 62 (1999) 1, 47-55 |
2403 | Selective cleaning of the cell debris in human chromosome preparations studied by scanning force microscopy J. Tamayo, M. Miles, A. Thein, P. Soothill J. Struct. Biol., 128 (1999) 2, 200-210 |
2518 | Topography of cell traces studied by atomic force microscopy H. Zimmermann, R. Hagedorn, E. Richter, G. Fuhr European Biophysics Journal, 28 (1999) 6, 516-525 |
2108 | Effect of streptolysin O on the microelasticity of human platelets analyzed by atomic force microscopy M. Walch, U. Ziegler, P. Groscurth Ultramicroscopy, 82 (2000) 1-4, 259-267 |
1980 | Bacterial turgor pressure can be measured by atomic force microscopy M. Arnoldi, M. Fritz, E. Bauerlein, M. Radmacher, E. Sackmann, A. Boulbitch Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 62 (2000) 1/B, 1034-1044 |
2000 | Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils J. C. Thimm, D. J. Burritt, W. A. Ducker, L. D. Melton Planta, 212 (2000) 1, 25-32 |
1951 | Atomic force microscopy of the cell nucleus L. F. Jimenez-Garcia, R. Fragoso-Soriano J. Struct. Biol., 129 (2000) 2-3, 218-222 |
2343 | Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy E. Nagao, O. Kaneko, J. A. Dvorak J. Struct. Biol., 130 (2000) 1, 34-44 |
1923 | Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology H. X. You, J. M. Lau, S. Zhang, L. Yu Ultramicroscopy, 82 (2000) 1-4, 297-305 |
2111 | Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi Ultramicroscopy, 82 (2000) 1-4, 253-258 |
2275 | Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy M. G. Langer, A. Koitschev, H. Haase, U. Rexhausen, J. K. Horber, J. P. Ruppersberg Ultramicroscopy, 82 (2000) 1-4, 269-278 |
2341 | Plasma membrane plasticity of Xenopus laevis oocyte imaged with atomic force microscopy H. Schillers, T. Danker, H. J. Schnittler, F. Lang, H. Oberleithner Cell. Physiol. Biochem., 10 (2000) 1-2, 99-107 |
2472 | Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal V. Vie, M. C. Giocondi, E. Lesniewska, E. Finot, J. P. Goudonnet, C. Le Grimellec Ultramicroscopy, 82 (2000) 1-4, 279-288 |
1842 | Volume dynamics in migrating epithelial cells measured with atomic force microscopy S. W. Schneider, P. Pagel, C. Rotsch, T. Danker, H. Oberleithner, M. Radmacher, A. Schwab Pflugers. Arch., 439 (2000) 3, 297-303 |
2251 | Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress M. Sato, K. Nagayama, N. Kataoka, M. Sasaki, K. Hane J. Biomech., 33 (2000) 1, 127-135 |
2292 | Molecular basis of cell adhesion to polymers characterized AFM T. Boland, Y. Dufrene, B. Barger, G. Lee Crit. Rev. Biomed. Eng., 28 (2000) 1-2, 195-196 |
1861 | Adapting atomic force microscopy for cell biology P. P. Lehenkari, G. T. Charras, A. Nykanen, M. A. Horton Ultramicroscopy, 82 (2000) 1-4, 289-295 |
2558 | Volume dynamics in migrating epithelial cells measured with atomic force microscopy S. W. Schneider, P. Pagel, C. Rotsch, T. Danker, H. Oberleithner, M. Radmacher, A. Schwab Pflugers. Arch., 439 (2000) 3, 297-303 |
1913 | Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions G. T. Charras, P. P. Lehenkari, M. A. Horton Ultramicroscopy, 86 (2001) 1-2, 85-95 |
2359 | Quantification of red blood cells using atomic force microscopy M. O'Reilly, L. McDonnell, J. O'Mullane Ultramicroscopy, 86 (2001) 1-2, 107-112 |
1952 | Atomic force microscopy of the erythrocyte membrane skeleton A. H. Swihart, J. M. Mikrut, J. B. Ketterson, R. C. Macdonald J. Microsc., 204 (2001) 3, 212-225 |
1895 | Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells Y. F. Dufrene Micron, 32 (2001) 2, 153-165 |
2351 | Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy Y. F. Dufrene, C. J. P. Boonaert, H. C. van der Mei, H. J. Busscher, P. G. Rouxhet Ultramicroscopy, 86 (2001) 1-2, 113-120 |
1899 | Artificially induced unusual shape of erythrocytes: an atomic force microscopy study M. Girasole, A. Cricenti, R. Generosi, A. Congiu-Castellano, G. Boumis, G. Amiconi J. Microsc., 204 (2001) 1, 46-52 |
2382 | Scanning force microscopy observation of tumor cells treated with hematoporphyrin IX derivatives R. Bischoff, G. Bischoff, S. Hoffmann Ann. Biomed. Eng., 29 (2001) 12, 1092-1099 |
2166 | High-Q dynamic force microscopy in liquid and its application to living cells J. Tamayo, A. D. Humphris, R. J. Owen, M. J. Miles Biophys. J., 81 (2001) 1, 526-537 |
1966 | Atomic Force Microscopy Study of the Adhesion of Saccharomyces cerevisiae W. R. Bowen, R. W. Lovitt, C. J. Wright J. Colloid. Interface. Sci., 237 (2001) 1, 54-61 |
1993 | Blood cell adhesion on sensor materials studied by light, scanning electron, and atomic-force microscopy G. Hildebrand, S. Kunze, M. Driver Ann. Biomed. Eng., 29 (2001) 12, 1100-1105 |
2252 | Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy M. Sugawara, Y. Ishida, H. Wada Hear Res., 174 (2002) 1-2, 222-229 |
1942 | Atomic force microscopy of height fluctuations of fibroblast cells B. Szabo, D. Selmeczi, Z. Kornyei, E. Madarasz, N. Rozlosnik Phys. Rev. E: Stat. Nonlin. Soft. Matter. Phys., 65 (2002) 4/1, 41910 |
2348 | Potassium-selective atomic force microscopy on ion-releasing substrates and living cells P. Schar-Zammaretti, U. Ziegler, I. Forster, P. Groscurth, U. E. Spichiger-Keller Anal. Chem., 74 (2002) 16, 4269-4274 |
2243 | Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM J. R. Smith, J. A. Swift J. Microsc., 206 (2002) 3, 182-193 |
2478 | The biophysics of sensory cells of the inner ear examined by atomic force microscopy and patch clamp M. G. Langer, A. Koitschev Methods Cell Biol., 68 (2002) 141-169 |
2226 | Investigating live and fixed epithelial and fibroblast cells by atomic force microscopy K. Sinniah, J. Paauw, J. Ubels Curr. Eye. Res., 24 (2002) 3, 188-195 |
2169 | High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy C. Le Grimellec, M. C. Giocondi, M. Lenoir, M. Vater, G. Sposito, R. Pujol J. Comp. Neurol., 451 (2002) 1, 62-69 |
2132 | Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells T. Ohashi, Y. Ishii, Y. Ishikawa, T. Matsumoto, M. Sato Biomed. Mater. Eng., 12 (2002) 3, 319-327 |
2017 | Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy M. J. Higgins, S. A. Crawford, P. Mulvaney, R. Wetherbee Protist, 153 (2002) 1, 25-38 |